
Checking Linearizability  
Using Hitting Families

Burcu Kulahcioglu Ozkan1, Rupak Majumdar1, Filip Niksic2

1 Max Planck Institute for Software Systems (MPI-SWS)
2 University of Pennsylvania



Linearizability as a correctness condition
Two execution histories on a concurrent list:

addAll(1, 2): true isEmpty(): true

clear()

1:

2:
addAll(1, 2): true

toString(): “[1]”clear()
1:

2:

Linearizable history: Concurrent operations can be totally ordered in a consistent way

Linearizable concurrent object: All of its execution histories are linearizable



Linearizability as a correctness condition
Two execution histories on a concurrent list:

addAll(1, 2): true isEmpty(): true

clear()

1:

2:
addAll(1, 2): true

toString(): “[1]”clear()
1:

2:

linearizable

Linearizable history: Concurrent operations can be totally ordered in a consistent way

Linearizable concurrent object: All of its execution histories are linearizable



Linearizability as a correctness condition
Two execution histories on a concurrent list:

addAll(1, 2): true isEmpty(): true

clear()

1:

2:
addAll(1, 2): true

toString(): “[1]”clear()
1:

2:

linearizable non-linearizable

Linearizable history: Concurrent operations can be totally ordered in a consistent way

Linearizable concurrent object: All of its execution histories are linearizable



Checking linearizability
Linearizability of a concurrent object 

• Pertains to verification
• Undecidable
• Approaches: Program logics, proof rules, semi-automated procedures

Linearizability of a single execution history 

• Pertains to testing
• NP-complete
• Approaches: Exhaustive search for a linearizability witness with space-time trade-offs



Checking linearizability
Linearizability of a concurrent object 

• Pertains to verification
• Undecidable
• Approaches: Program logics, proof rules, semi-automated procedures

Linearizability of a single execution history 

• Pertains to testing
• NP-complete
• Approaches: Exhaustive search for a linearizability witness with space-time trade-offs



Our contribution
In a nutshell: 

• Prioritize the search space to quickly find linearizability witnesses (if they exist)

In more detail: 

• Introduce linearizability depth of a history

• For a history of linearizability depth d, with n operations on k threads: 
Suffices to explore a strong d-hitting family of at most O(knd-1) linearizations

• Experiments on java.util.concurrent: 
In most cases linearizability witnessed by strong d-hitting families with d ≤ 5!



Linearizability
Execution history induces a partial order of operations

op1(args1): res1

op2(args2): res2

op1(args1): res1

op2(args2): res2

op1 happens before op2 op1 and op2 are concurrent

Schedule: A total order of operations that extends the happens-before relation

Linearizability witness: A schedule in which the results of operations satisfy the 
sequential specification

Linearizable history: A history that has a linearizability witness



Testing concurrent objects [Wing and Gong ’93]

Simulator

Concurrent object Sequential object  
(specification)

linearizablehistory1

linearizable

non-linearizable

history2

historym

⋮ ⋮



Testing concurrent objects [Wing and Gong ’93]

Simulator

Concurrent object Sequential object  
(specification)

linearizablehistory1

linearizable

non-linearizable

history2

historym

⋮ ⋮Jepsen (distributed systems)
Violat (java.util.concurrent)



Testing concurrent objects [Wing and Gong ’93]

Simulator

Concurrent object Sequential object  
(specification)

linearizablehistory1

linearizable

non-linearizable

history2

historym

⋮ ⋮Jepsen (distributed systems)
Violat (java.util.concurrent)

Observation 1:
Most histories are linearizable



Execution history generated by Violat 
for ConcurrentLinkedQueue

toString(): “[]”

size(): 0

poll(): null

isEmpty(): true

clear() addAll(1, 2): true

removeAll(1, 0): false retainAll(2, 0): true

retainAll(0, 0): false poll(): null

toArray(): [] poll(): 2

containsAll(1, 1): false remove(0): false

1:

2:

3:

4:

5:

7:

6:



Execution history generated by Violat 
for ConcurrentLinkedQueue

toString(): “[]”

size(): 0

poll(): null

isEmpty(): true

clear() addAll(1, 2): true

removeAll(1, 0): false retainAll(2, 0): true

retainAll(0, 0): false poll(): null

toArray(): [] poll(): 2

containsAll(1, 1): false remove(0): false

1:

2:

3:

4:

5:

7:

6:

total schedules:

lin. witnesses:

1,004,640

134,400



Execution history generated by Violat 
for ConcurrentLinkedQueue

toString(): “[]”

size(): 0

poll(): null

isEmpty(): true

clear() addAll(1, 2): true

removeAll(1, 0): false retainAll(2, 0): true

retainAll(0, 0): false poll(): null

toArray(): [] poll(): 2

containsAll(1, 1): false remove(0): false

1:

2:

3:

4:

5:

7:

6:

total schedules:

lin. witnesses:

1,004,640

134,400



Execution history generated by Violat 
for ConcurrentLinkedQueue

toString(): “[]”

size(): 0

poll(): null

isEmpty(): true

clear() addAll(1, 2): true

removeAll(1, 0): false retainAll(2, 0): true

retainAll(0, 0): false poll(): null

toArray(): [] poll(): 2

containsAll(1, 1): false remove(0): false

1:

2:

3:

4:

5:

7:

6:

total schedules:

lin. witnesses:

1,004,640

134,400



Linearizability depth
Strong hitting:  
Given d ≥ 1, a schedule 𝛂 strongly hits a d-tuple of operations (op0, …, opd-1) if it

• maximally delays each opi

• while maintaining the relative order op0 <𝛂 … <𝛂 opd-1

d-Linearizable history:  
There exist operations op0, …, opd-1 such that every schedule that strongly hits  
(op0, …, opd-1) is a witness to linearizability

Linearizability depth of a history:  
Smallest d ≥ 1 such that the history is d-linearizable



History from the example has linearizability depth 1

toString(): “[]”

size(): 0

poll(): null

isEmpty(): true

clear() addAll(1, 2): true

removeAll(1, 0): false retainAll(2, 0): true

retainAll(0, 0): false poll(): null

toArray(): [] poll(): 2

containsAll(1, 1): false remove(0): false

1:

2:

3:

4:

5:

7:

6:

total schedules:

lin. witnesses:

1,004,640

134,400



History from the example has linearizability depth 1

toString(): “[]”

size(): 0

poll(): null

isEmpty(): true

clear() addAll(1, 2): true

removeAll(1, 0): false retainAll(2, 0): true

retainAll(0, 0): false poll(): null

toArray(): [] poll(): 2

containsAll(1, 1): false remove(0): false

1:

2:

3:

4:

5:

7:

6:

total schedules:

lin. witnesses:

1,004,640

134,400

Observation 2:
Most linearizable histories have small linearizability depth



Checking d-linearizability

Recall: A history is d-linearizable if there exist operations op0, …, opd-1 such that 
every schedule that strongly hits (op0, …, opd-1) is a witness to linearizability

Strong d-hitting family: A set of schedules 𝓕 is a strong d-hitting family if it strongly 
hits every d-tuple of operations

Conclusion: To check d-linearizability, it suffices to explore schedules from  
a strong d-hitting family



Size of strong hitting families [OOPSLA ’18]

Given a history of n operations on k threads, and d ≥ 1:

• There is a strong d-hitting family of size O(nd)

• There is a strong d-hitting family of size O(knd-1): 
A single schedule can strongly hit all operations in a thread



For the history from the example, 1-linearizability is 
shown by exploring 7 schedules!

toString(): “[]”

size(): 0

poll(): null

isEmpty(): true

clear() addAll(1, 2): true

removeAll(1, 0): false retainAll(2, 0): true

retainAll(0, 0): false poll(): null

toArray(): [] poll(): 2

containsAll(1, 1): false remove(0): false

1:

2:

3:

4:

5:

7:

6:

total schedules:

lin. witnesses:

1,004,640

134,400

strong 1-hit. family: 7



Experiments
Observation 1: Most execution histories are linearizable

Observation 2: Most linearizable histories have small linearizability depth

Goal: 
Validate the observations for the histories generated by Violat 

on java.util.concurrent



Breakdown of histories generated by Violat 
for ConcurrentLinkedQueue

non-linearizable: 3 linearizable: 616 sequential: 161

Total: 780 histories



Breakdown of histories generated by Violat

ArrayBlockingQueue
ConcurrentHashMap

ConcurrentLinkedDeque
ConcurrentLinkedQueue

ConcurrentSkipListMap
ConcurrentSkipListSet
LinkedBlockingDeque
LinkedBlockingQueue
LinkedTransferQueue

PriorityBlockingQueue

Total number of histories

0 377 753 1130 1506

non-linearizable linearizable sequential



Linearizable histories whose linearizability is shown 
by exploring strong d-hitting families

50%

62.5%

75%

87.5%

100%

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
ArrayBlockingQueue

ConcurrentHashMap

ConcurrentLinkedDeque

ConcurrenLinkedQueue

ConcurrentSkipListMap

ConcurrentSkipListSet

LinkedBlockingDeque

LinkedBlockingQueue

LinkedTransferQueue

PriorityBlockingQueue

d =



Conclusion
Contributions 

• Introduce linearizability depth of a history

• For a history of linearizability depth d, with n operations on k threads: 
Suffices to explore a strong d-hitting family of at most O(knd-1) linearizations

• Experiments on java.util.concurrent: 
In most cases linearizability witnessed by strong d-hitting families with d ≤ 5!

Future work 

• Optimized linearizability checker for Jepsen; experiments on distributed systems

• Weaker correctness conditions like causal consistency


