
Checking Linearizability Using Hitting Families
Burcu Kulahcioglu Ozkan

MPI-SWS
Kaiserslautern, Germany
burcu@mpi-sws.org

Rupak Majumdar
MPI-SWS

Kaiserslautern, Germany
rupak@mpi-sws.org

Filip Niksic
University of Pennsylvania

Philadelphia, PA, USA
fniksic@seas.upenn.edu

Abstract
Linearizability is a key correctness property for concurrent
data types. Linearizability requires that the behavior of con-
currently invoked operations of the data type be equivalent
to the behavior in an execution where each operation takes
effect at an instantaneous point of time between its invoca-
tion and return. Given an execution trace of operations, the
problem of verifying its linearizability is NP-complete, and
current exhaustive search tools scale poorly.
In this work, we empirically show that linearizability of

an execution trace is often witnessed by a schedule that
orders only a small number of operations (the “linearizability
depth”) in a specific way, independently of other operations.
Accordingly, one can structure the search for linearizability
witnesses by exploring schedules of low linearizability depth
first. We provide such an algorithm. Key to our algorithm is a
procedure to generate a strong d-hitting family of schedules,
which is guaranteed to cover all linearizability witnesses
of depth d . A strong d-hitting family of schedules of an
execution trace consists of a set of schedules, such that for
each tuple of d operations in the trace, there is a schedule
in the family that (i) executes these operations in the order
they appear in the tuple, and (ii) as late as possible in the
execution.

We show that most linearizable execution traces from ex-
isting benchmarks can be witnessed by strongly d-hitting
schedules for d ≤ 5. Our result suggests a practical and auto-
mated method for showing linearizability of a trace based on
a prioritization of schedules parameterized by the lineariz-
ability depth.

CCS Concepts • Software and its engineering → Soft-
ware testing and debugging; • Computing methodolo-
gies→ Concurrent algorithms; •Mathematics of com-
puting → Combinatorics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’19, February 16–20, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6225-2/19/02. . . $15.00
https://doi.org/10.1145/3293883.3295726

Keywords linearizability, concurrent data structures, sched-
uling, hitting families
ACM Reference Format:
Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic. 2019.
Checking Linearizability Using Hitting Families. In 24th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’19), February 16–20, 2019, Washington, DC, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3293883.3295726

1 Introduction
Linearizability [15] is a standard correctness condition for
concurrent data structures. It requires that each operation of
a concurrent data structure executed concurrently by clients
takes effect at an instantaneous point of time between its
invocation and return, forming a total order on the effect of
the operations consistent with a sequential execution. An
execution is linearizable if there exists such a total order of
operations where: (i) the total order respects the real time
order of the non-concurrent operations and (ii) the behavior
of the operations are consistent with the sequential specifi-
cation of the data structure.
Consider, for example, the two execution histories of a

concurrent list data structure in Figure 1. The execution
history in Figure 1a is linearizable. The total order (lineariza-
tion) of operations which orders the operation addAll (1, 2)
before clear () produces the same outcomes as the outcomes
recorded in the history. In this order isEmpty () returns the
value true, which matches its sequential specification. How-
ever, the execution in Figure 1b is not linearizable due to the
interleavings between addAll (1, 2) and toString() methods.
Neither of the sequential executions [addAll (1, 2); toString()]
and [toString(); addAll (1, 2)] result in the outcome [1] for
toString() obtained in the execution history.

Given an execution trace, one can check if it is linearizable
by finding an appropriate schedule of the operations and
checking that the outcomes of the schedule conform to the
sequential specification of the operations. Unfortunately,
Gibbons and Korach [13] showed that checking a single
execution history for linearizability is already NP-complete.
Thus, linearizability checking tools (such as Burckhardt et al.
[6], Horn and Kroening [16], Lowe [18], Vechev et al. [23])
based on exhaustively exploring all possible schedules of a
history remain limited to small histories with few operations.
In this paper, we propose a prioritization of the search

space of schedules using the notion of linearizability depth.
Empirically, many execution histories can be shown to be

https://doi.org/10.1145/3293883.3295726
https://doi.org/10.1145/3293883.3295726

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

1 addAll(1,2): true 2 isEmpty(): true

3 clear()

T1

T2

(a) A linearizable execution with a total order [1, 3, 2]

1 clear() 2 toString(): [1]

3 addAll(1, 2)

T1

T2

(b) A non-linearizable execution

Figure 1. Example executions of a concurrent list data struc-
ture operations

linearizable by carefully scheduling a small number of op-
erations relative to each other, no matter how the other
operations are scheduled. We capture this observation by
defining the twin notions of strong hitting schedules and
linearizability depth. Informally, a schedule strongly hits a
sequence of d operations (o1, . . . ,od) if it orders these oper-
ations according to this sequence and, moreover, schedules
each operation oj as late as possible in the schedule. The
linearizability depth of an execution history is d if there exist
d operations (o1, . . . ,od) such that any schedule strongly
hitting these operations is a witness for linearizability.
A set of schedules forms a strong d-hitting family if for

every d tuple of operations, there is some schedule in the
family that is strongly d-hitting for this tuple. Clearly, a
strong d-hitting family is sufficient to check linearizability
of any execution history of linearizability depth at most d .
Our main contribution is an algorithm to construct a strong
d-hitting family of schedules for a given execution history
and a given d . In particular, we show that the size of such a
family can be bounded by O (mnd−1) for execution histories
withm threads and n operations.

The notion of strongly hitting schedules was recently
introduced in Ozkan et al. [20] (see also Chistikov et al. [7]),
in the context of random testing of asynchronous distributed
programs.We adapt the notion to the setting of linearizability
in two ways. First, unlike Ozkan et al. [20] which provides
a probabilistic guarantee for random testing, we provide a
strong d-hitting family guaranteed to prove linearizability
(up to depth d). Our construction uses the combinatorial
insights in the proofs of the probabilistic guarantee, such as
indexing schedules using chain partitions of the underlying
partial ordering of events. Second, unlike Ozkan et al. [20]
which constructs an unknown partial order dynamically
and hence computes chain partitions online, we can use the
natural chain partition induced by the underlying threads
in an execution trace. This simplifies some combinatorial

aspects of Ozkan et al. [20] and also allows a more precise
upper bound.

Overall, our construction gives a technique that prioritizes
searching for linearizability witnesses in “small linearizabil-
ity depth first” order. To show the effectiveness of this strat-
egy, we have evaluated our linearizability checker on a bench-
mark of execution histories of Java’s java.util.concurrent
package, collected by test harnesses of the Violat framework
[9] for testing linearizability. For these benchmarks, we show
that exploring a strong d-hitting family with d ≤ 5 suffices
for showing linearizability for 99.9% of the linearizable traces
(8660 out of 8673, or 99.9%). For 99.5% of linearizable traces,
the value ofd ≤ 4 suffices, and for 93.3% of linearizable traces
the value as low as d ≤ 2 suffices! Thus, most traces could
be proved to be linearizable using strong 5-hitting families.
In our experiments, the size of strong d-hitting families were
smaller than the theoretical upper bound and much smaller
than the total possible number of schedules.

2 Motivating Example
We motivate linearizability depth through an example. Con-
sider the execution history in Figure 2 obtained from a test
that invokes random operations on java.util.concurrent.-

ConcurrentLinkedQueue, the Java implementation of an un-
bounded thread-safe queue based on linked nodes. Each
line in the figure represents the execution on a thread, with
the passage of time from left to right. The thick segments
show the duration between the invocation and return of an
operation. The operations with overlapping durations run
concurrently to each other. The operations in the history
are provided with the arguments written in parentheses and
the results written after a colon. The descriptions of the
operations are given in Figure 3.

In order to demonstrate linearizability of an execution his-
tory, one needs to find a witnessing schedule (a total order of
operations) that is consistent with the history: (1) if the first
operation returns before the second one is invoked, the first
one should appear before the second one in the schedule,
and (2) the return values should be consistent with the se-
quential specification of a queue. For the execution history in
Figure 2, this means the witnessing schedule needs to order
the operations 0–toString(), 1–poll (), 2–size(), 3–isEmpty (),
6–removeAll (1, 0), 8–retainAll (0, 0), 9–poll (), 10–toArray (),
and 12–containsAll (1, 1) before the operation 5–addAll (1, 2),
since their return values are consistent with their execution
on an empty queue, and 5–addAll (1, 2) populates the queue
with elements. These dependencies are shown with red ar-
rows in Figure 2. A naive enumeration of schedules would
need to iterate over 1,004,640 total schedules in search for
one of 134,400 witnessing schedules.

While it might seem that a witnessing schedule must con-
sider many pairwise interactions between concurrent calls,
the linearizability depth of this execution history is just 1

Checking Linearizability Using Hitting Families PPoPP ’19, February 16–20, 2019, Washington, DC, USA

0 toString(): []

2 size(): 0

1 poll(): null

3 isEmpty(): true

4 clear() 5 addAll(1, 2): true

6 removeAll(1, 0): false 7 retainAll(2, 0): true

8 retainAll(0, 0): false 9 poll(): null

10 toArray(): [] 11 poll(): 2

12 containsAll(1, 1): false 13 remove(0): false

T1

T2

T3

T4

T5

T6

T7

Figure 2. An execution history whose linearizability can be shown by a schedule satisfying all the constraints shown by the
red arrows. There are 134,400 such schedules out of 1,004,640 total schedules. The linearizability depth of the history is 1 and a
strong 1-hitting family with only 7 schedules is guaranteed to contain a witnessing schedule.

addAll – Inserts all the arguments into the queue
clear – Removes all the elements in the queue
containsAll – Returns true if all the arguments are contained in the queue
isEmpty – Returns true if the queue is empty
poll – Retrieves and removes the head of the queue if the queue is

non-empty and returns null otherwise
remove – Removes the argument from the queue and returns true if it

modifies the queue
removeAll – Removes all the arguments from the queue and returns true

if it modifies the queue
retainAll – Retains only the elements in the argument and returns true

if it modifies the queue
size – Returns the size of the queue
toArray – Returns an array representation of the queue
toString – Returns a string representation of the queue

Figure 3. Operations in the history in Figure 2

and hence it is 1-linearizable. This is because any schedule
which delays addAll maximally will schedule it after all the
other operations and hence provide a witnessing schedule.
Now consider a family of schedules constructed in the

followingway. For each i with 1 ≤ i ≤ 7, we delay scheduling
operations from thread i until there are no other concurrent
operations to schedule. The constructed family contains 7
schedules. It has the property that for each operation o there
is a schedule where o appears at the latest possible moment.
We call a set of schedules with this property a strong 1-hitting
family of schedules. For any trace of linearizability depth
1, there is some schedule in a strong 1-hitting family that
is a witnessing schedule for that trace. In particular, in the
schedule for i = 3, the operation 5–addAll (1, 2) appears at
the latest possible moment, which makes this schedule a
witnessing schedule.

In general, witnessing schedules may need to enforce or-
dering relations between more than two operations. This
leads to a generalization of execution histories of linearizabil-
ity depth d , for d > 1, for which a witnessing schedule needs
to order d operations relative to each other and maximally
delayed with respect to all other operations. We call these
histories d-linearizable histories. Consider a modification to
the history in Figure 2 with an additional requirement that
the operation 6–removeAll needs to be scheduled in between
0–toString and 5–addAll. This modified history is called 2-
linearizable since any schedule which schedules 6 before
5 and also maximally delays these two operations act as a
witness schedule.

Correspondingly, we need to construct strong d-hitting
families with a higher value of the parameter d . A strong
2-hitting family (and, in general, a strong d-hitting family)
of schedules ensures that for each pair (or d-tuple) of events,
there is a schedule which orders these events in the relative
order given by the tuple and delays them maximally. Clearly,
such a family is guaranteed to contain witness schedules for
every history of linearizability depth 2 (or d , in general). We
show an explicit construction of strong d-hitting families in
Section 4.
In the rest of the paper, we make the following contri-

butions. We formally define the notion of d-linearizability
(for a parameter d ≥ 1) for execution histories. We show a
general algorithm to construct a strong d-hitting family of
schedules and use it as the basis of a linearizability checker
which prioritizes witness schedules sufficient to show lin-
earizability for histories with low linearizability depth. For
an execution history withm threads and n operations, the
size of the family is theoretically bounded by O (mnd−1). We
empirically demonstrate that most linearizable histories from

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

a standard Java benchmark have a witness schedule already
in a strong d-hitting family for d ≤ 5 and moreover that the
size of a strong d-hitting family is often much smaller than
the theoretical bound.1

3 Linearizability
As our goal is to check linearizability of a concurrent data
structure, we are only interested in the interactions between
that concurrent data structure and the client program that
invokes the operations of the data structure. We formalize
these interactions using execution histories, following the
standard definitions from the literature [12, 15].

Definition 3.1 (Action). An action is either a tuple of the
form ⟨id, call (m), t⟩, representing an invocation of themethod
m in the thread t , or a tuple of the form ⟨id, ret (m), t , r ⟩, rep-
resenting a return of the methodm in the thread t with the
result r (we use r = ⊥ if the method does not have a return
value). In both cases the action has an action identifier id.

For example, ⟨1, call (poll), 0⟩ and ⟨1, ret (poll), 0, null⟩ are
the two actions for the invocation and return of the method
1–poll () in Figure 2.

Definition 3.2 (History). A history is a sequence of actions
h = [e1, e2, . . . , en]. A history is sequential if (i) it starts with
an invocation and ends with a return, (ii) every invocation is
immediately followed by a corresponding return, and (iii) ev-
ery return other than the last is immediately followed by
an invocation. A thread subhistory of a history h is a subse-
quence of all actions executed on the same thread. A history
is well-formed if all of its thread subhistories are sequential.

For example, the history in Figure 2 involving the actions
in the first three threads is

[⟨0, call (toString), 1⟩, ⟨2, call (size), 2⟩, ⟨4, call (clear), 3⟩,
⟨4, ret (clear), 3,⊥⟩, ⟨5, call (addAll (1, 2)), 3⟩,
⟨0, ret (toString), 1, []⟩, ⟨1, call (poll), 1⟩, ⟨1, ret (poll), 1, null⟩,
⟨2, ret (size), 2, 0⟩, ⟨3, call (isEmpty), 2⟩,
⟨3, ret (isEmpty), 2, true⟩, ⟨5, ret (addAll (1, 2)), 3, true⟩]

Note that all three thread subhistories are sequential, hence
the history is well-formed. In the rest of the paper we as-
sume all histories are well-formed. With this assumption,
the following notion is well-defined.

Definition 3.3 (Operation). An operation is a pair opid =
⟨callAction, retAction⟩, where callAction = ⟨id, call (m), t⟩ and
retAction = ⟨id, ret (m), t , r ⟩ are the matching invocation and
return actions.
1 Note that this does not imply that the execution histories have lineariz-
ability depth d : it is possible that a schedule in a strong d-hitting family
“accidentally” witnesses linearizability for a history with higher depth. In
other words, strongly d-hitting families are sufficient but not necessary to
witness linearizability for a history of depth d .

As an example, for the method size in Figure 2, we write
op2 = ⟨⟨2, call (size), 2⟩, ⟨2, ret (size), 2, 0⟩⟩. We will continue
using shorthand notations 2–size(), 2–size, or simply 2 to
refer to the same operation.

Definition 3.4 (Executed-before). Given a history h, an op-
eration o1 = ⟨callAction1, retAction1⟩ is executed before an-
other operation o2 = ⟨callAction2, retAction2⟩ if retAction1
appears before callAction2 in h. If neither of the two opera-
tions is executed before the other, we say the operations are
concurrent.

For example, the operation 0–toString() is executed before
1–poll () in Figure 2, and the operations 0–toString(), 2–size(),
and 4–clear () are concurrent to each other.
For a given history, the set of all operations Op together

with the executed-before relation forms a partially ordered set
or poset.

Definition 3.5 (Poset). A partially ordered set (poset) is a
pair P = (X , ≤), whereX is a set and ≤ is a partial order (i.e.,
reflexive, anti-symmetric, and transitive binary relation) on
X . We write x < y if x ≤ y and x , y. We also write x ≥ y
and x > y if y ≤ x and y < x , respectively.

Definition 3.6 (Maximal element). A maximal element of
a poset P = (X , ≤) is an element x ∈ X that is not strictly
smaller than any other element in X , i.e., ∀y ∈ X : x ≮ y.

For example, in Figure 2, the operation 11–poll () is maxi-
mal in the poset of operations. If we exclude that operation,
we have 7–retainAll (2, 0), 10–toArray (), and 13–remove(0)
as the maximal elements.

Definition 3.7 (Linear extension). A linear extension of a
poset P = (X , ≤P) is a poset Q = (X , ≤Q) such that ∀x ,y ∈
X : x ≤P y =⇒ x ≤Q y, and moreover ≤Q is a total order,
i.e., ∀x ,y ∈ X : x ≤Q y or y ≤Q x . We will often use the
word schedule instead of linear extension.

We are now ready to define the notion of linearizability
of a history.

Definition 3.8 (Linearizability). A history is linearizable if
there exists a schedule s of its operations that is consistent
with the sequential specification of the data structure, i.e.,
if the operations were executed sequentially according to s ,
they would return the same results as the ones recorded in
the history.

In a history with n operations, a naive search for a sched-
ule witnessing linearizability enumerates n! schedules in
the worst case. It is unlikely there is a significantly better
approach, since the problem of deciding linearizability is
NP-complete [15]. However, in practice we may be able to
quickly discharge positive instances, that is, quickly find a
schedule witnessing linearizability when there is one, by
cleverly prioritizing some schedules over the others. We
discuss one such approach in the next section.

Checking Linearizability Using Hitting Families PPoPP ’19, February 16–20, 2019, Washington, DC, USA

4 Prioritization of Schedules to Check
Linearizability

In the example in Section 2, a single operation, 5–addAll (1, 2),
needed to be delayed relative to the other concurrent oper-
ations in order to ensure that the schedule witnesses lin-
earizability. More generally, linearizability may depend on
d ≥ 1 operations being appropriately delayed, leading to the
following definitions.

Definition 4.1 (Strong hitting [20]). Let d ≥ 1 be an integer
and P a poset. We say a schedule α for P strongly hits a d-
tuple of elements ⟨x0, . . . ,xd−1⟩ if for every y ∈ P, y ≥α xi
in α for some i ∈ {0, . . . ,d − 1} implies y ≥ x j in P for some
j ≥ i .

Informally, a schedule strongly hits ad-tuple ⟨x0, . . . ,xd−1⟩
if the only reason for an element y to appear after xi in the
schedule is that y ≥ x j in the poset for some j ≥ i . In other
words, each xi is maximally delayed in the schedule relative
to the other elements in the tuple.

Definition 4.2 (d-Linearizability). Letd ≥ 1 be an integer. A
history is d-linearizable if there exist operations o0, . . . ,od−1
such that every schedule that strongly hits ⟨o0, . . . ,od−1⟩ is a
witness to linearizability. The smallestd such that the history
is d-linearizable is the linearizability depth of that history.

The history in the example in Section 2 is 1-linearizable.
The modified version of the history, where we additionally
required the operation 6–removeAll to be scheduled in be-
tween operations 0–toString and 5–addAll, is 2-linearizable,
since the ordering requirement is ensured by strongly hitting
the pair of operations ⟨6, 5⟩.

Proposition 4.3. The linearizability depth of a linearizable
history with n operations is at most n. □

Our approach to checking linearizability of a given history
is centered around the notion of strongd-hitting families [20],
which are sets of schedules that strongly hit every d-tuple
of operations. For increasing values of d , we enumerate a
strong d-hitting family, checking if any of the schedules is
a linearizability witness. Once d reaches the linearizability
depth of the history, by definition the strong d-hitting family
is guaranteed to contain a linearizability witness. Proposi-
tion 4.3 ensures that we can stop the search once d reaches
the number of operations in the history. Note that for a lin-
earizable history, the search may stop before reaching the
linearizability depth: we may get lucky and stumble upon a
linearizability witness for smaller values of d .

The practical efficiency of the approach follows from two
factors. First is our observations that for concurrent data
structures in Java’s java.util.concurrent package most lin-
earizable histories have small linearizability depth. Second is
the fact that for small values of d we can effectively construct
strong d-hitting families of small size.

4.1 Strong Hitting Families
We first formally define strong hitting families and then give
an algorithm to construct them. We follow the approach
presented in Ozkan et al. [20].
Definition 4.4 (Strong hitting family [20]). Let d ≥ 1 be an
integer and P a poset. A set of schedules F is called a strong
d-hitting family for P if for every d-tuple of elements in P
there is a schedule in F that strongly hits it.
For a poset of n elements, there is a simple way to con-

struct a strong d-hitting family: For each d-tuple of elements
⟨x0, . . . ,xd−1⟩, simply construct a dedicated schedule that
maximally delays these d elements while respecting their
relative order given by the tuple. The strong d-hitting family
constructed in this way contains O (nd) schedules. Ozkan
et al. [20] show that the construction can be improved by
considering a partition of the poset into chains.
Definition 4.5 (Chain partition). Let P = (X , ≤) be a poset.
A subset λ ⊆ X is a chain if it is totally ordered, that is,∀x ,y ∈
λ : x ≤ y or y ≤ x . A chain partition is a decomposition of
the poset asX = λ1∪ . . .∪λm , where each λi is a non-empty
chain and the chains are pairwise disjoint, that is, λi ∩λj = ∅
whenever i , j.

Since the elements in a chain are totally ordered, they can
all be strongly hit by a single schedule: There are no concur-
rent elements in a chain, so maximally delaying one element
does not prevent the other elements to be maximally delayed
as well. This observation is the basis of the construction by
Ozkan et al. Instead of constructing one schedule for each d-
tuple of elements, we construct one schedule for each chain
and a (d−1)-tuple of elements: The elements in the chain are
maximally delayed before the elements in the (d − 1)-tuple,
and the elements in the (d − 1)-tuple are maximally delayed
while respecting the relative ordering given by the tuple, as
before. If there are m chains in the chain partition of the
poset, the construction gives a strong d-hitting family of size
O (mnd−1)—an improvement over O (nd).

In our setting, the poset of operations for a given history
can be naturally partitioned into chains based on the threads.
Recall that by Definition 3.2 all thread subhistories of a well-
formed history are sequential. By Definition 3.4, this directly
translates to operations on each thread forming a chain.
For example, the history in Figure 2 can be partitioned into
seven chains: λ1 = [0, 1], λ2 = [2, 3], λ3 = [4, 5], λ4 = [6, 7],
λ5 = [8, 9], λ6 = [10, 11], and λ7 = [12, 13].
Given a poset of n operations partitioned intom thread-

based chains and a linearizability depth parameter d , Algo-
rithm 1 constructs a strong d-hitting family for the poset.
The algorithm is based on the proof of Theorem 6 in Ozkan
et al. [20]. The main idea is to maintain a family of par-
tial schedules indexed by the schedule indices of the form
⟨tid, ⟨x1, . . . ,xd−1⟩⟩, where tid ∈ {1, . . . ,m} is a thread iden-
tifier and xi ∈ {1, . . . ,n} for 1 ≤ i < d are distinct numbers

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

ALGORITHM 1: Constructs a strong d-hitting family of schedules
for a poset of operations and a linearizability depth parameter d
Input: poset of operations (Op, ≤)
Input: depth parameter d
Output: d-hitting family of schedules for (Op, ≤)

1 n ← number of operations in Op
2 m ← number of threads in Op
3 scheduleIndices ← generateIndices(n,m,d)
4 for schIndex in scheduleIndices do
5 schedules[schIndex]← []

6 for op in topologicalSort (Op) do
7 for schIndex = ⟨tid, ⟨x1, . . . ,xd−1⟩⟩ in scheduleIndices do
8 schedule ← schedules[schIndex]
9 ⟨xi1 , . . . ,xil ⟩ ← all x from ⟨x1, . . . ,xd−1⟩ s.t. operation

op′ with op′.id = x has already been inserted
10 ⟨opi1 , . . . , opil ⟩ ← operations with ids ⟨xi1 , . . . ,xil ⟩
11 if op.id in ⟨x1, . . . ,xd−1⟩ then
12 i ← the index of op.id in ⟨x1, . . . ,xd−1⟩
13 if l = 0 or i > il or op > opil then
14 insert op at the end of schedule
15 else
16 j ← the least index s.t. i < i j and op is

concurrent with all of opi j , opi j+1 , . . . , opil
17 insert op right before opi j in schedule
18 else if op.tid = tid then
19 if l = 0 or op > opil then
20 insert op at the end of schedule
21 else
22 j ← the least index s.t. op is concurrent with all

of opi j , opi j+1 , . . . , opil
23 insert op right before opi j in schedule
24 else
25 op′ ← the last operation in schedule s.t. op′ < op
26 insert op right after op′ in schedule

27 return schedules

representing operation identifiers. Thus each schedule index
corresponds to a choice of a chain and d − 1 elements dis-
cussed earlier. In the pseudocode we assume that an unspec-
ified function generateIndices (line 3) generates all possible
schedule indices based on n, m, and d . The schedules are
initially empty (lines 4–5). In the main loop (lines 6–26), the
algorithm iterates over the operations and inserts them into
the schedules in the position determined by the schedule
index. At the end, the construction ensures that for every d-
tuple of operations ⟨op0, . . . , opd−1⟩, the schedule indexed by
the schedule index ⟨op0.tid, ⟨op1.id, . . . , opd−1.id⟩⟩ strongly
hits ⟨op0, op1, . . . , opd−1⟩.
For the correctness of the algorithm it is important that

the operations are iterated over in an “upgrowing” manner,
that is, in each iteration the operation should be maximal
among the operations which are already inserted into the

schedule. This requirement is equivalent to iterating over
the operations according to an arbitrary schedule, which
can be ensured by topologically sorting the operations. In
the pseudocode we assume there is an unspecified func-
tion topologicalSort (line 6) that topologically sorts the given
poset of operations.
Let us now discuss how an operation op is inserted into

schedule defined in line 8 and indexed by the schedule in-
dex schIndex = ⟨tid, ⟨x1, . . . ,xd−1⟩⟩. There are three cases
to consider. The first case corresponds to strongly hitting
op since its identifier is in (x1, . . . ,xd−1), the second case
corresponds to strongly hitting op since it is in the chain tid,
and the third case corresponds to the case where op need
not to be strongly hit.
Let xi1 , . . . ,xil with i1 < . . . < il be the operation iden-

tifiers among x1, . . . ,xd−1 of the operations that were in-
serted into the schedules before op; let opi1 , . . . , opil be the
corresponding operations to the identifiers xi1 , . . . ,xil . The
invariant maintained by the algorithm is that for every oper-
ation op0 with op0.tid = tid, schedule strongly hits the tuple
⟨op0, opi1 , . . . , opil ⟩.

1. In the first case (line 11), the operation identifier op.id is
among x1, . . . ,xd−1, meaning that op needs to be strongly
hit, that is, placed as late as possible in the schedule. Let i
be the index such that op.id = xi . If op should be scheduled
after all of opi1 , . . . , opil (that is, l = 0 or i > il in line 13),
or if op cannot be scheduled before opil (that is, op > opil
in line 13), we insert op at the end of the schedule (line
14). Otherwise i < il and op is concurrent with opil . Let
j be the least index such that i < i j and op is concurrent
with all of opi j , opi j+1 , . . . , opil . We insert op immediately
before opi j in the schedule (line 17). Note that the insertion
is possible in all cases because of the invariant and the
fact that op is maximal among the operations previously
inserted into the schedule.

2. In the second case (line 18), the operation op is in the
thread tid (that is, op.tid = tid), thus it needs to be strongly
hit. If it cannot be scheduled before opil (that is, l = 0
or op > opil in line 19), we insert op at the end of the
schedule (line 20). Otherwise op is concurrent with opil .
Let j be the least index such that op is concurrent with all of
opi j , opi j+1 , . . . , opil . We insert op immediately before opi j
in the schedule (line 23). Again, the insertion is possible
in all cases because of the invariant and the maximality
of op.

3. In the third case (line 24), the operation op is not to be
strongly hit, so we schedule it as early in the schedule as
possible. That is, we find the last operation op′ such that
op′ < op and schedule op immediately after op′.

It is not difficult to see that the invariant of the algorithm
is preserved in all three cases, which ensures correctness.

Checking Linearizability Using Hitting Families PPoPP ’19, February 16–20, 2019, Washington, DC, USA

The size of the generated strongd-hitting family. The al-
gorithm generates one schedule (not necessarily unique) for
each schedule index ⟨tid, ⟨x1, . . . ,xd−1⟩⟩. There arem choices
for tid and

(
n

d−1

)
(d − 1)! choices for the tuple ⟨x1, . . . ,xd−1⟩.

Hence, the size of the family is bounded by O (mnd−1).

5 Implementation
Our implementation collects a set of concurrent execution
histories on concurrent data structures and checks their lin-
earizability by comparing the collected outcomes to the out-
comes obtained in the d-hitting families of schedules.

Concurrent data structures checked for linearizability.
We check the linearizability of the Java library of concurrent
collections, specifically the data structures in the package
java.util.concurrent, which contain implementations of
queues, deques, sets, and key-value maps (given in Table
1). Some methods in this library (e.g., those implementing
non-basic data type operations such as addAll for a concur-
rent queue) admit non-atomic behaviors resulting in non-
linearizable execution histories.

Testing data structure implementations. Wegenerate the
tests using the Violat [9] framework, which stress tests the
concurrent data structures with a high level of parallelism. It
automatically generates tests which run a number of threads
invoking the methods of the concurrent data structures. For
each test execution, Violat creates a history file keeping the
information about which threads run which operations, the
operation arguments, the timestamps of the invocation and
return of the operations, and the return values.

We build the poset for each history file and check their lin-
earizability by checking whether schedules from a strong d-
hitting family produce the recorded outcomes. Note that the
main goal of the Violat framework is to expose linearizability
violations. It checks the linearizability of a history by check-
ing whether the obtained outcomes of the operations are
contained in a precomputed set of acceptable return-value
outcomes, which might label a non-linearizable history as
linearizable, but the reported violations are real violations.

Constructing strong hitting families. We construct the
strong d-hitting family of schedules following Algorithm 1,
and test the data structures on the set of distinctly generated
schedules.

Automatically generating tests. We automatically gener-
ate a tester class for each history, which runs the schedules
of operations to be explored for checking the linearizability
of that history. Briefly, a test class for a history encapsulates
the set of schedules to be tested (the strong d-hitting fam-
ily) and the expected outcomes of the operations. It declares
a separate method for each schedule to be tested. Each of
these methods invoke a particular order of the operations

and collect the outcomes (i.e., the return values of the meth-
ods or the thrown exceptions). Finally, they check whether
the resulting outcomes are the same with the corresponding
method outcomes in the history. If this is the case, the history
is found to be linearizable with a witness schedule. We use
Java parser library [17] to programmatically create the tester
classes.

6 Experiments
In this section, we present our experimental work which
empirically shows that exploring schedules from a strong
d-hitting family for small values of d is sufficient to show
the linearizability of a linearizable history.

We evaluate our approach on the execution histories gen-
erated using the Violat framework [9], which stress tests
the Java concurrent collection library. The summary of the
collected histories is given in Table 1. For each data struc-
ture, the column #Histories shows the number of histories
under analysis and #Ops shows the number of operations
in each history. The columns max(c), µ(c), and σ (c) list the
maximum, average, and the standard deviation of the level
of concurrency (i.e. the maximum number of mutually con-
current operations). For example, the level of concurrency
is c = 7 for the history in Figure 2. The columns max(cp),
µ(cp), and σ (cp) list the maximum, average, and the standard
deviation of the number of concurrent operation pairs. The
number of concurrent operation pairs refers to the number of
operation pairs which are concurrent and thus may be sched-
uled in any order. For the history in Figure 2, the number of
concurrent operation pairs cp = 48. As the table shows, the
histories checked for linearizability are highly concurrent,
which makes it impractical to explore all possible schedules.

For each non-sequential history, i.e., where the operations
are not totally ordered, we constructed strong d-hitting fam-
ilies of schedules and automatically generated test classes
running these schedules. The size of the d-hitting families
of schedules for the set of histories collected from the data
structures is given in Table 2. Each row summarizes the size
of the strong d-hitting families for the concurrent data type
given in the first column. For the increasing values of d , the
table lists the maximum (max), average (µ), and the standard
deviation (σ) of the number of schedules constructed for
the d-hitting family. We count only the distinct schedules
in each d-hitting family (recall that Algorithm 1 may pro-
duce the same schedule multiple times), so the size of the
strong d-hitting family varies depending on the number of
concurrent operation pairs.
The size of the hitting families of schedules grows expo-

nentially in the parameter d . In some of our examples, the
generated number of schedules for parameter values d ≥ 7
approaches one million. Still, this number is small in com-
parison to the number of all possible schedules.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

Table 1. Data structures in java.util.concurrent package checked for linearizability

Class name #Histories #Ops max(c) µ(c) σ (c) max(cp) µ(cp) σ (cp)

ArrayBlockingQueue 1029 14 7 2.21 0.91 52 3.94 7.71
ConcurrentHashMap 1055 14 2 2.00 0.00 13 8.42 1.93
ConcurrentLinkedDeque 681 12 6 2.37 0.78 34 4.26 4.85
ConcurrentLinkedQueue 780 14 7 2.27 0.85 49 4.21 7.01
ConcurrentSkipListMap 1506 14 7 2.28 0.56 48 4.04 3.62
ConcurrentSkipListSet 417 18 6 2.54 1.28 63 10.00 15.77
LinkedBlockingDeque ‘ 1131 8 4 2.63 0.82 18 5.99 4.57
LinkedBlockingQueue 1199 9 3 2.54 0.50 15 7.28 3.40
LinkedTransferQueue 1355 15 5 2.10 0.45 43 4.79 5.14
PriorityBlockingQueue 1311 14 7 2.32 1.04 59 4.94 9.57

Table 2. The maximum, average, and the standard deviation of the number of schedules generated for the increasing values of
d for the sets of histories

#Sch (d = 1) #Sch (d = 2) #Sch (d = 3) #Sch (d = 4) #Sch (d = 5)

Class name max µ σ max µ σ max µ σ max µ σ max µ σ

ArrayBlockingQueue 7 2 1 76 6 12 656 21 83 4493 96 483 24639 412 2290
ConcurrentHashMap 2 2 0 16 11 3 66 26 10 157 39 23 268 47 34
ConcurrentLinkedDeque 6 3 1 57 7 8 378 17 42 1898 42 171 7321 98 568
ConcurrentLinkedQueue 7 2 1 74 7 11 580 22 78 3718 88 446 19168 351 2101
ConcurrentSkipListMap 7 3 1 70 7 6 534 13 33 3352 27 162 17028 65 687
ConcurrentSkipListSet 6 3 1 89 15 24 875 94 222 6660 568 1499 40200 2876 8072
LinkedBlockingDeque 4 3 1 26 9 7 113 22 27 355 42 66 696 60 110
LinkedBlockingQueue 3 3 0 20 10 5 76 21 16 175 33 30 298 39 42
LinkedTransferQueue 5 2 1 60 7 8 474 17 56 2736 55 300 12038 187 1238
PriorityBlockingQueue 7 2 1 85 7 14 805 32 117 6043 167 757 36825 802 4057

We checked the linearizability of the histories in Table 1
by running the hitting families of schedules for increasing
values of d , and we counted linearizable histories whose
linearizability can be shown by a strong d-hitting family of
schedules. Table 3 provides these results. Each row summa-
rizes the results collected from the histories of a concurrent
data type. The columns #Hists and #Lin list the number of
histories (after the elimination of sequential histories) and
the number of linearizable histories, respectively. For val-
ues of d from 1 to 5, the other columns show the number
(#Lin) and the percentage (%) of linearizable histories whose
linearizability can be shown by a strong d-hitting family.
The results show that for a large portion of linearizable

histories linearizability can be shown by exploring a strong
d-hitting family for d ≤ 5. In particular, d ≤ 5 suffices for
all linearizable histories collected from ConcurrentHashMap,

ConcurrentLinkedDeque, ConcurrentLinkedQueue, Concurrent-
SkipListMap, LinkedBlockingDeque, LinkedBlockingQueue, and
PriorityBlockingQueue. For a few histories whose lineariz-
ability cannot be shown with d = 5, we increased the value
of d . In particular, with d = 6 we can show linearizability
of two additional histories for ArrayBlockingQueue, three for
ConcurrentSkipListSet, and two for LinkedTransferQueue.
With d ≤ 7, almost all linearizable histories in the exper-
iments are shown to be linearizable. The percentages of
linearizable histories are summarized and shown in Figure 4.

The experimental results presented in this section demon-
strate the practicality of prioritizing the search by the lin-
earizability depth. Small values of d suffice for discharging
the vast majority of linearizable histories, allowing one to
switch to more expensive approaches for histories with high
linearizability depth or non-linearizable histories.

Checking Linearizability Using Hitting Families PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Table 3. The total number of linearizable histories and the number of histories whose linearizability is shown by exploring
strong d-hitting families

d = 1 d = 2 d = 3 d = 4 d = 5

Class name #Hists #Lin #Lin % #Lin % #Lin % #Lin % #Lin %

ArrayBlockingQueue 723 714 651 91.2 685 95.9 702 98.3 707 99.0 709 99.3
ConcurrentHashMap 1054 959 707 73.7 857 89.4 949 99.0 959 100 - -
ConcurrentLinkedDeque 520 520 387 74.4 478 91.9 515 99.0 519 99.8 520 100
ConcurrentLinkedQueue 619 616 525 85.2 608 98.7 615 99.8 616 100 - -
ConcurrentSkipListMap 1358 1321 1311 99.2 1319 99.8 1320 99.9 1321 100 - -
ConcurrentSkipListSet 417 417 288 69.1 363 87.1 381 91.4 402 96.4 412 98.8
LinkedBlockingDeque 1106 967 743 76.8 920 95.1 963 99.6 967 100 - -
LinkedBlockingQueue 1185 975 533 54.7 808 82.9 928 95.2 972 99.7 975 100
LinkedTransferQueue 1261 1229 878 71.4 1144 93.1 1203 97.9 1217 99.0 1226 99.8
PriorityBlockingQueue 982 955 793 83.0 910 95.3 935 97.9 949 99.4 955 100

50

55

60

65

70

75

80

85

90

95

100

ABQ CHM CLD CLQ CSLM CSLS LBD LBQ LTQ PBQ

d=1 d=2 d=3 d=4 d=5 d=6 d=7

Figure 4. The percentage of linearizable histories whose linearizability can be shown by exploring schedules from a strong
d-hitting family, for 1 ≤ d ≤ 7.

7 Related Work
Gibbons and Korach [13] show that checking the lineariz-
ability of even a single execution history is NP-complete.
Alur et al. [1] and Hamza [14] show that checking if all exe-
cutions of a data structure implementation with a bounded
number of threads are linearizable is EXPSPACE-complete.
The problem is undecidable for an unbounded number of
threads [3]. Decidability holds for certain data types such as
stacks, queues, and registers [4]. Emmi et al. [11] and Emmi
and Enea [10] show that for certain data types, called collec-
tion data types, linearizability is polynomial-time checkable.
Although the collection types cover many important cases,
this result does not hold for all concurrent data structures.

There is a large amount of work for showing linearizability
of data structures [8]. In some lines of work, the program-
mer is required to provide the linearization points of the

concurrent operations [2, 19, 21, 25]. Then, the operations
are considered to take effect instantaneously at these points.
This reduces the complexity of the analysis as it only con-
siders a single schedule. In contrast, we focus on a fully
automated approach for showing linearizability that does
not require any annotations for linearization points.
Automated techniques usually explore the space of all

schedules to find a witness. Wing and Gong [24] present an
approach to checking linearizability by using a backtracking
algorithm. Given a history and a specification, the algorithm
tries to linearize the history recursively starting from a min-
imal operation. If the outcome of the linearized minimal
operation is consistent with the specification, it continues
with the linearization with a minimal operation in the re-
maining part of the history. Otherwise, it backtracks and
tries to linearize another operation. Lowe [18] improves the

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

algorithm so that it eliminates redundant search when it en-
counters a configuration equivalent to another one analyzed
earlier. He also suggests a variant of the algorithm, which
linearizes a set of concurrent minimal operations instead of
a single one. P-composability [16] generalizes the locality
principle of linearizability to operations on the same concur-
rent object and exploits this in the backtracking linearization
algorithm. Paraglider [22] uses the SPIN model checker to
enumerate all possible linearizations of a history and checks
each one against a given sequential specification. Line-up
[6] does not take specifications as input but generates them
by enumerating all sequential behaviors of the operations.
Then, it checks whether the concurrent executions corre-
spond to a sequential execution of the same operations. Our
paper structures the search on the space of schedules using
linearizability depth.
Owing to the large number of possible linearizations of

execution histories, such enumerative approaches become
impractical for histories with more than a few operations.
For a scalable detection of violations, some lines of work
employ approximations for linearizability to structure the
search. Our work is in the spirit of Bouajjani et al. [5], which
parametrically weakens the preorder on histories and detects
violations up to that parameter. Violat [9] checks the notion
of atomicity of the test harnesses using a precomputed set of
possible outcomes, whose violation implies linearizability
violation.

Different from the approximation approaches to detect vi-
olations, in this work we present a parametrized approxima-
tion analysis for proving linearizability of execution histories.
Essentially, these two approaches can be applied complemen-
tarily to each other. One might show the linearizability of
the histories using strong d-hitting families, which are not
detected to have violations by some other methods.

Hitting families of schedules were introduced in Chistikov
et al. [7] for testing asynchronous programs. Strongd-hitting
families are defined in Ozkan et al. [20], which generalizes
the construction of hitting families for any poset presented
online. In asynchronous and distributed programs, the poset
is formed by the asynchronous events created in the system
at run time, where the ordering relation between them is
based on the dependency model of the system. In the execu-
tion of these systems, the poset of events is not known before
the execution and there may not be a clear chain decompo-
sition. Ozkan et al. [20] use an online chain decomposition
algorithm which partitions the poset into a number of total
orders online. In our setting, we start with collected execu-
tion histories. This allows us to extract the partial order up
front and the chain decomposition of the poset corresponds
to partitioning operations by the threads.

Acknowledgments
This researchwas funded in part by theDeutsche Forschungs-
gemeinschaft (DFG) project 389792660-TRR 248 and by the
European Research Council Grant Agreement No. 610150
(ERC Synergy Grant ImPACT (http://www.impact-erc.eu/)).

References
[1] Rajeev Alur, Kenneth L. McMillan, and Doron A. Peled. 2000. Model-

Checking of Correctness Conditions for Concurrent Objects. Inf.
Comput. 160, 1-2 (2000), 167–188. https://doi.org/10.1006/inco.1999.
2847

[2] Daphna Amit, Noam Rinetzky, ThomasW. Reps, Mooly Sagiv, and Eran
Yahav. 2007. Comparison Under Abstraction for Verifying Linearizabil-
ity. In Computer Aided Verification, 19th International Conference, CAV
2007, Berlin, Germany, July 3-7, 2007, Proceedings. Springer, 477–490.
https://doi.org/10.1007/978-3-540-73368-3_49

[3] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza.
2013. Verifying Concurrent Programs against Sequential Specifications.
In Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. Springer, 290–309. https://doi.org/10.1007/
978-3-642-37036-6_17

[4] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza.
2015. On Reducing Linearizability to State Reachability. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II. Springer, 95–107.
https://doi.org/10.1007/978-3-662-47666-6_8

[5] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza.
2015. Tractable Refinement Checking for Concurrent Objects. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015. ACM, 651–662. https://doi.org/10.1145/2676726.
2677002

[6] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan.
2010. Line-up: a complete and automatic linearizability checker. In
Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2010, Toronto, Ontario,
Canada, June 5-10, 2010. ACM, 330–340. https://doi.org/10.1145/
1806596.1806634

[7] Dmitry Chistikov, Rupak Majumdar, and Filip Niksic. 2016. Hitting
Families of Schedules for Asynchronous Programs. In Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part II. Springer, 157–176. https:
//doi.org/10.1007/978-3-319-41540-6_9

[8] Brijesh Dongol and John Derrick. 2015. Verifying Linearisability: A
Comparative Survey. ACM Comput. Surv. 48, 2 (2015), 19:1–19:43.
https://doi.org/10.1145/2796550

[9] Michael Emmi and Constantin Enea. 2017. Exposing Non-Atomic
Methods of Concurrent Objects. CoRR abs/1706.09305 (2017).
arXiv:1706.09305 http://arxiv.org/abs/1706.09305

[10] Michael Emmi and Constantin Enea. 2018. Sound, complete,
and tractable linearizability monitoring for concurrent collections.
PACMPL 2, POPL (2018), 25:1–25:27. https://doi.org/10.1145/3158113

[11] Michael Emmi, Constantin Enea, and Jad Hamza. 2015. Monitor-
ing refinement via symbolic reasoning. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, USA, June 15-17, 2015. ACM, 260–269.
https://doi.org/10.1145/2737924.2737983

[12] Ivana Filipović, Peter W. O’Hearn, Noam Rinetzky, and Hongseok
Yang. 2010. Abstraction for concurrent objects. Theor. Comput. Sci.
411, 51-52 (2010), 4379–4398. https://doi.org/10.1016/j.tcs.2010.09.021

http://www.impact-erc.eu/
https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1007/978-3-662-47666-6_8
https://doi.org/10.1145/2676726.2677002
https://doi.org/10.1145/2676726.2677002
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1007/978-3-319-41540-6_9
https://doi.org/10.1007/978-3-319-41540-6_9
https://doi.org/10.1145/2796550
http://arxiv.org/abs/1706.09305
http://arxiv.org/abs/1706.09305
https://doi.org/10.1145/3158113
https://doi.org/10.1145/2737924.2737983
https://doi.org/10.1016/j.tcs.2010.09.021

Checking Linearizability Using Hitting Families PPoPP ’19, February 16–20, 2019, Washington, DC, USA

[13] Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memo-
ries. SIAM J. Comput. 26, 4 (1997), 1208–1244. https://doi.org/10.1137/
S0097539794279614

[14] Jad Hamza. 2015. On the Complexity of Linearizability. In Networked
Systems - Third International Conference, NETYS 2015, Agadir, Morocco,
May 13-15, 2015, Revised Selected Papers. Springer, 308–321. https:
//doi.org/10.1007/978-3-319-26850-7_21

[15] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

[16] Alex Horn and Daniel Kroening. 2015. Faster Linearizability Checking
via P-Compositionality. In Formal Techniques for Distributed Objects,
Components, and Systems - 35th IFIP WG 6.1 International Conference,
FORTE 2015, Held as Part of the 10th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2015, Grenoble, France,
June 2-4, 2015, Proceedings. Springer, 50–65. https://doi.org/10.1007/
978-3-319-19195-9_4

[17] JavaParser. 2018. JavaParser for Processing Java Code. http:
//javaparser.org/

[18] Gavin Lowe. 2017. Testing for linearizability. Concurrency and Com-
putation: Practice and Experience 29, 4 (2017). https://doi.org/10.1002/
cpe.3928

[19] Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and
Greta Yorsh. 2010. Verifying linearizability with hindsight. In Proceed-
ings of the 29th Annual ACM Symposium on Principles of Distributed
Computing, PODC 2010, Zurich, Switzerland, July 25-28, 2010. ACM,
85–94. https://doi.org/10.1145/1835698.1835722

[20] Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei
Befrouei, and Georg Weissenbacher. 2018. Randomized testing of
distributed systems with probabilistic guarantees. PACMPL 2, OOPSLA
(2018), 160:1–160:28. https://doi.org/10.1145/3276530

[21] Viktor Vafeiadis. 2010. Automatically Proving Linearizability. In Com-
puter Aided Verification, 22nd International Conference, CAV 2010, Ed-
inburgh, UK, July 15-19, 2010. Proceedings. Springer, 450–464. https:
//doi.org/10.1007/978-3-642-14295-6_40

[22] Martin T. Vechev and Eran Yahav. 2008. Deriving linearizable fine-
grained concurrent objects. In Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implemen-
tation, Tucson, AZ, USA, June 7-13, 2008. Springer, 125–135. https:
//doi.org/10.1145/1375581.1375598

[23] Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2009. Experience with
Model Checking Linearizability. InModel Checking Software, 16th Inter-
national SPIN Workshop, Grenoble, France, June 26-28, 2009. Proceedings.
Springer, 261–278. https://doi.org/10.1007/978-3-642-02652-2_21

[24] Jeannette M. Wing and C. Gong. 1993. Testing and Verifying Con-
current Objects. J. Parallel Distrib. Comput. 17, 1-2 (1993), 164–182.
https://doi.org/10.1006/jpdc.1993.1015

[25] Shao Jie Zhang. 2011. Scalable automatic linearizability checking. In
Proceedings of the 33rd International Conference on Software Engineering,
ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. ACM, 1185–
1187. https://doi.org/10.1145/1985793.1986037

A Artifact appendix
A.1 Abstract
Our artifact contains the source code of our implementation
and a data set of history files used in our experiments. Our
implementation has two main parts for: i) generating strong
hitting families of schedules of operations in a given history
and ii) generation of Java source files such that each file in-
vokes the strong hitting family of schedules for a particular
history and depth d parameter. Then, we run these produced

files to check the linearizability of the histories. We evaluated
our implementation on sets of histories collected from differ-
ent concurrent data structures in java.util.concurrent
package. In the artifact, we provide all the history files used
in our experimental work.
We also provide a main script file which reproduces the

results in our paper. For each benchmark set, it i) generates
the Java source files for strong d-hitting families of schedules,
ii) compiles and runs these files, and iii) processes the output
files and collects the results reported in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Algorithm for construction of strong hitting
families of schedules is given in Algorithm 1 in the paper.
• Program: The source code in the package lin/scheduleGen
implements the algorithm for constructing strong hitting
families of schedules. The source code in the package lin/testGen
produces the Java test files for checking linearizability.
• Compilation: Scala Build Tool (sbt) and Java compiler
• Binary: Binary not included.
• Data set: The data set of history files are provided in the
compressed file example/histories.zip.
• Run-time environment: Our artifact has been developed
and tested on MacOS 10.13.6.
• Hardware: We ran our experiments on a machine with a
2.6 GHz Intel Core i7 Processor and 16 GB memory.
• Output: The experiments produce three sets of output files:
• Publicly available?: Yes.
• Artifacts publicly available?: Yes.
• Artifacts functional?: Yes.
• Artifacts reusable?: Yes.
• Results validated?: Yes.

A.3 Description
A.3.1 How delivered
Our artifact is publicly available on GitHub: https://github.com/
burcuku/check-lin. It has a Zenodo DOI: https://doi.org/10.5281/
zenodo.1890165.

A.3.2 Hardware dependencies
Our experiments produce Java source files which take about 20
GB together with their compiled class files. The artifact requires a
machine with enough disk space for the generated files.

A.3.3 Software dependencies
Our software requires Java 1.8, Scala 2.12, Scala Build Tool, and
Python 3.6 (with the statistics package) installations.

A.3.4 Data sets
We use sets of history files collected from the ArrayBlockingQueue
(ABQ), ConcurrentHashMap (CHM)), ConcurrentLinkedDeque (CLD),
ConcurrentLinkedQueue (CLQ), ConcurrentSkipListMap (CSLM),
ConcurrentSkipListSet (CSLS), LinkedBlockingDeque (LBD),
LinkedBlockingQueue (LBQ), LinkedTransferQueue (LTQ) and
PriorityBlockingQueue (PBQ) data structures in Java’s
java.util.concurrent package.

The data sets can be extracted from example/histories.zip.

https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1007/978-3-319-26850-7_21
https://doi.org/10.1007/978-3-319-26850-7_21
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-319-19195-9_4
https://doi.org/10.1007/978-3-319-19195-9_4
http://javaparser.org/
http://javaparser.org/
https://doi.org/10.1002/cpe.3928
https://doi.org/10.1002/cpe.3928
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1145/3276530
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1145/1375581.1375598
https://doi.org/10.1145/1375581.1375598
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1006/jpdc.1993.1015
https://doi.org/10.1145/1985793.1986037
https://github.com/burcuku/check-lin
https://github.com/burcuku/check-lin
https://doi.org/10.5281/zenodo.1890165
https://doi.org/10.5281/zenodo.1890165

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic

A.4 Installation
The project can be cloned from the GitHub repository:
$ git clone https://github.com/burcuku/check-lin

The contents of the compressed file example/histories.zip
should be extracted into example folder so that example/histories
directory keeps a folder for the histories of each concurrent data
structure.

A.5 Experiment workflow
The experimental results used in the paper can be produced by
running the main script:
$ cd check-lin
$ python scripts/main.py

This script creates the Java source files for linearizability check-
ing, compiles and runs them. It also processes the produced statis-
tics files (which appear in stats and out folders) and collects the
results in the folder results.

Note: It takes approximately 1–3 hours to run the script for each
concurrent data structure data set, and in total approximately 20
hours for the whole script on a machine with a 2.6 GHz Intel Core
i7 Processor and 16 GB memory.
Alternatively, the script can be run separately for each history
set, by providing the set of history files to check for:

$ python scripts/main.py ABQ

The set of history file can be one of ABQ, CHM, CLD, CLQ, CSLM,
CSLS, LBD, LBQ, LTQ or PBQ.

A.6 Evaluation and expected result
The main script collects the results in the folder results which
contains three files:
• The file results/table1.txt keeps the properties of the
processed history files for each data structure which is given
in Table 1 in the paper.
• The file results/table2.txt keeps the number of sched-
ules generated for each data structure for increasing d values
which is given in Table 2 in the paper.
• The file results/table3.txt keeps the number and per-
centage of the linearizable history files shown by strong
gitting families of schedules for increasing d values which is
given in Table 3 in the paper.

A.7 Experiment customization
The artifact can be used for checking linearizability of any execution
history provided that the history information is recorded in a certain
format. We use the format generated by the Violat [9] framework.
More information for checking linearizability of a single history
file is provided in our project’s GitHub repository.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Linearizability
	4 Prioritization of Schedules to Check Linearizability
	4.1 Strong Hitting Families

	5 Implementation
	6 Experiments
	7 Related Work
	Acknowledgments
	References
	A Artifact appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

