Why Is Random Testing Effective for Partition Tolerance Bugs?

Rupak Majumdar, Filip Niksic

Max Planck Institute for Software Systems (MPI-SWS)

... practitioners test their code

... practitioners test their code

... by providing **random** inputs.

... practitioners test their code

... by providing **random** inputs.

And despite our best judgement,

... practitioners **test** their code

... by providing **random** inputs.

And despite our best judgement,

...testing is surprisingly effective in finding bugs.

... practitioners **test** their code

... by providing **random** inputs.

And despite our best judgement,

...testing is surprisingly effective in finding bugs.

We explore this unexpected effectiveness in testing distributed systems under partition faults.

Jepsen: Call Me Maybe

A framework for black-box testing of distributed systems by randomly inserting network partition faults

Analyses on http://jepsen.io/: etcd, Postgres, Redis, Riak, MongoDB, Cassandra, Kafka, RabbitMQ, Consul, Elasticsearch, Aerospike, Zookeeper, Chronos... 1. General Random Testing Framework

2. Randomly Testing Distributed Systems

3. Wider Context: Combinatorial Testing

Covering family = Set of tests that **cover all goals**

Covering family = Set of tests that **cover all goals**

"Small" covering families = Efficient testing

Suppose $P[\circ \text{ covers } \bullet] \ge p$

Characterize covering families with respect to p and [G]

Let **G** be the set of goals and **P**[random \bigcirc covers \bigcirc] \ge **p**

Theorem. There exists a covering family of size **p**-1 log|G|.

Let **G** be the set of goals and **P**[random \bigcirc covers \bigcirc] \ge **p**

Theorem. There exists a covering family of size **p**-1 **log**|**G**|. *Proof.*

P[random \bullet does *not* cover \bullet] \leq 1 - p

Let **G** be the set of goals and **P**[random \bigcirc covers \bigcirc] \ge **p**

Theorem. There exists a covering family of size **p**-1 **log|G|**. *Proof.*

P[random • does *not* cover •] \leq 1 - p P[K independent • do *not* cover •] \leq (1 - p)^K

Let **G** be the set of goals and **P**[random \bigcirc covers \bigcirc] \ge **p**

Theorem. There exists a covering family of size **p**-1 log|G|. *Proof.*

P[random • does not cover •] \leq 1 - pP[K independent • do not cover •] \leq (1 - p)KP[K independent • are not a covering family] \leq |G| (1 - p)K

Let **G** be the set of goals and **P**[random \bigcirc covers \bigcirc] \ge **p**

Theorem. There exists a covering family of size **p**-1 log|G|. *Proof.*

P[random • does *not* cover •] \leq 1 - p P[K independent • do *not* cover •] \leq (1 - p)^K P[K independent • are *not* a covering family] \leq |G| (1 - p)^K

For $K = p^{-1} \log |G|$, this probability is strictly less than 1. Therefore, there must exist K tests that are a covering family!

Let **G** be the set of goals and **P**[random \bigcirc covers \bigcirc] \ge **p**

Theorem. There exists a covering family of size **p**-1 log|G|.

Theorem. For $\epsilon > 0$, a random family of p⁻¹ log|G| + p⁻¹ log ϵ^{-1} tests is a covering family with probability at least **1** - ϵ .

Random Testing Framework

- 3. What is the notion of coverage?
- 4. Can we bound **P**[random covers •]?

1. General Random Testing Framework

2. Randomly Testing Distributed Systems

3. Wider Context: Combinatorial Testing

In a dojo in Kaiserslautern, **n** ninjas are in training.

Training is **complete** if for every pair of ninjas, there is a round where they are in opposing teams.

In a dojo in Kaiserslautern, **n** ninjas are in training.

Training is **complete** if for every pair of ninjas, there is a round where they are in opposing teams.

In a dojo in Kaiserslautern, **n** ninjas are in training.

Training is **complete** if for every pair of ninjas, there is a round where they are in opposing teams.

In a dojo in Kaiserslautern, **n** ninjas are in training.

Training is **complete** if for every pair of ninjas, there is a round where they are in opposing teams.

In a dojo in Kaiserslautern, **n** ninjas are in training.

Training is **complete** if for every pair of ninjas, there is a round where they are in opposing teams.

In a dojo in Kaiserslautern, **n** ninjas are in training.

Training is **complete** if for every pair of ninjas, there is a round where they are in opposing teams.

In a dojo in Kaiserslautern, **n** ninjas are in training.

Training is **complete** if for every pair of ninjas, there is a round where they are in opposing teams.

In a dojo in Kaiserslautern, **n** ninjas are in training.

Training is **complete** if for every pair of ninjas, there is a round where they are in opposing teams.

- Naïve: **O(n²)**
- Can you do it in **log n** rounds?

More generally, **n** ninjas are training in **k** teams.

Training is **complete** if for every choice of **k** ninjas, there is a round where they are each in different team.

More generally, **n** ninjas are training in **k** teams.

Training is **complete** if for every choice of **k** ninjas, there is a round where they are each in different team.

More generally, **n** ninjas are training in **k** teams.

Training is **complete** if for every choice of **k** ninjas, there is a round where they are each in different team.

More generally, **n** ninjas are training in **k** teams.

Training is **complete** if for every choice of **k** ninjas, there is a round where they are each in different team.

More generally, **n** ninjas are training in **k** teams.

Training is **complete** if for every choice of **k** ninjas, there is a round where they are each in different team.

More generally, **n** ninjas are training in **k** teams.

Training is **complete** if for every choice of **k** ninjas, there is a round where they are each in different team.

- Naïve: O(n^k)
- Can you do it in k^{k+1} (k!)⁻¹ log n rounds?

From Training Ninjas to Distributed Systems with Partition Faults

ninjas teams rounds complete training nodes in a network blocks in a partition partitions **covering family**

Splitting Coverage

Given **n** nodes and $\mathbf{k} \leq \mathbf{n}$:

- Tests are partitions of nodes into k blocks: $P = \{B_1, ..., B_k\}$
- Testing goals are sets of k nodes: $S = \{x_1, ..., x_k\}$
- P covers S if P splits S: $x_1 \in B_1, ..., x_k \in B_k$

Covering families are called k-splitting families here

A Bug in Chronos

- A distributed fault-tolerant job scheduler
- Works in conjunction with Mesos and Zookeeper
- Three special nodes: Chronos leader, Mesos leader, Zookeeper leader

A Bug in Chronos

- A distributed fault-tolerant job scheduler
- Works in conjunction with Mesos and Zookeeper
- Three special nodes: Chronos leader, Mesos leader, Zookeeper leader

Splitting Coverage

Given **n** nodes and $\mathbf{k} \leq \mathbf{n}$:

- Number of partitions with **k** blocks:
- Number of sets of **k** nodes:
- Splitting a set with a random partition:

By the general theorem, there exists a **k**-splitting family of size **k**^{k+1} (k!)⁻¹ log n

 $\binom{n}{k} \approx \frac{n^k}{k!}$

 $\binom{n}{k} \approx \frac{k^n}{k!}$

$$p = \frac{k^{n-k}}{\binom{n}{k}} \approx \frac{k!}{k^k}$$

Effectiveness of Jepsen

Theorem. For $\epsilon > 0$, a random family of partitions of size $k^{k+1} (k!)^{-1} \log n + k^k (k!)^{-1} \log \epsilon^{-1}$ is a k-splitting family with probability at least $1 - \epsilon$.

For Chronos, with n = 5, k = 2, $\epsilon = 0.2$: a family of 10 randomly chosen partitions is splitting with probability 80%

Other Coverage Notions

k,I-Separation

- Tests: Bipartitions
- Goals: Two disjoint sets of **k** and **l** nodes
- Coverage notion: The two sets included in different blocks
- Size of covering families: O(f(k,l) log n)

Minority isolation

- Tests: Bipartitions
- Goals: Nodes
- Coverage notion: The node is in the smaller block
- Covering families: O(log n)

Other Coverage Notions

k,I-Separation

- Tests: Binartitions
- k-Splitting, k,l-separation, and minority isolation explain most bugs found by Jepsen

Goals: Modes

- Coverage notion: The node is in the smaller block
- Covering families: **O(log n)**

Other Coverage Notions

k,I-Separation

- Tests: Binartitions
- k-Splitting, k,l-separation, and minority isolation explain most bugs found by Jepsen
- With high probability, O(log n) random partitions simultaneously provide full coverage for all these notions

GOAIS: NOUES

- Coverage notion: The node is in the smaller block
- Covering families: O(log n)

1. General Random Testing Framework

2. Randomly Testing Distributed Systems

3. Wider Context: Combinatorial Testing

General Testing Framework

- 3. What is the notion of coverage?
- 4. How to construct covering families?

- 3. **k**-splitting coverage
- 4. Random families of size O(log n) are k-splitting w.h.p.

Concurrent Programs

Program = Partially ordered set of events

k-hitting coverage: Schedule "hits" events e₁ < ... < e_k
Hitting families of size O(log n), O(log n)^{k-1}, O(n^{k-1})

Chistikov, Majumdar, Niksic. *Hitting families of schedules for asynchronous programs.* CAV 2016 Burckhardt et al. *A randomized scheduler with probabilistic guarantees of finding bugs*. ASPLOS 2010

- 3. Input coincides with the chosen values on the k features
- 4. Various constructions of covering arrays

Kuhn, Kacker, Lei. Combinatorial Testing. Encyclopedia of Software Engineering. 2010

General Testing Framework

- 3. What is the notion of coverage?
- 4. How to construct covering families?

- 3. What is the notion of coverage?
- 4. How to construct covering families?