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Despite Many Formal 
Approaches…

…practitioners test their code

…by providing random inputs.

And despite our best judgement,

…testing is surprisingly effective in finding bugs.

We explore this unexpected effectiveness 
in testing distributed systems under partition faults.



Jepsen: Call Me Maybe
A framework for black-box testing of distributed systems  
by randomly inserting network partition faults 

Analyses on http://jepsen.io/: etcd, Postgres, Redis, Riak, 
MongoDB, Cassandra, Kafka, RabbitMQ, Consul, 
Elasticsearch, Aerospike, Zookeeper, Chronos…

http://jepsen.io/


1. General Random Testing Framework 

2. Randomly Testing Distributed Systems 

3. Wider Context: Combinatorial Testing
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Tests and Goal Coverage

Tests T Goals G

A test covers 
some goals

Covering family = Set of tests that cover all goals

“Small” covering families = Efficient testing



Random Testing

Pick a random test from T Fix a goal from G

Suppose P[    covers    ] ≥ p 

Characterize covering families with respect to p and |G|
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Let G be the set of goals and P[random     covers    ] ≥ p

Theorem. There exists a covering family of size p-1 log|G|.

Proof.

P[ random     does not cover     ] ≤ 1 - p
P[ K independent     do not cover     ] ≤ (1 - p)K
P[ K independent     are not a covering family ] ≤ |G| (1 - p)K

For K = p-1 log|G|, this probability is strictly less than 1.
Therefore, there must exist K tests that are a covering family!



Probabilistic Method
Let G be the set of goals and P[random     covers    ] ≥ p 

Theorem. There exists a covering family of size p-1 log|G|. 

Theorem. For ϵ > 0, a random family of p-1 log|G| + p-1 log ϵ-1 
tests is a covering family with probability at least 1 - ϵ.



3. What is the notion of coverage? 
4. Can we bound P[random     covers    ]?

Random Testing Framework

Tests T Goals G

1. What are tests? 2. What are 
testing goals?
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2. Randomly Testing Distributed Systems 

3. Wider Context: Combinatorial Testing
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Ninjas in Training
More generally, n ninjas are training in k teams. 
Training is complete if for every choice of k ninjas, there is a 
round where they are each in different team. 
How many rounds make the training complete? 

• Naïve: O(nk) 

• Can you do it in kk+1 (k!)-1 log n rounds?



From Training Ninjas to 
Distributed Systems with Partition Faults

ninjas 
teams 
rounds 

complete training 

nodes in a network 
blocks in a partition 

partitions 
covering family



Splitting Coverage

Given n nodes and k ≤ n: 

• Tests are partitions of nodes into k blocks: P = {B1, …, Bk} 

• Testing goals are sets of k nodes: S = {x1, …, xk} 

• P covers S if P splits S: x1 ∈ B1, …, xk ∈ Bk 

Covering families are called k-splitting families here 



A Bug in Chronos
• A distributed fault-tolerant job scheduler 

• Works in conjunction with Mesos and Zookeeper 

• Three special nodes: Chronos leader, Mesos leader, 
Zookeeper leader
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Splitting Coverage

Given n nodes and k ≤ n: 

• Number of partitions with k blocks: 

• Number of sets of k nodes: 

• Splitting a set with a random partition: 

By the general theorem, there exists a k-splitting family  
of size kk+1 (k!)-1 log n
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Effectiveness of Jepsen

Theorem. For ϵ > 0, a random family of partitions of size  
kk+1 (k!)-1 log n + kk (k!)-1 log ϵ-1 is a k-splitting family with 
probability at least 1 - ϵ. 

For Chronos, with n = 5, k = 2, ϵ = 0.2: a family of 10 
randomly chosen partitions is splitting with probability 80%



Other Coverage Notions
k,l-Separation 
• Tests: Bipartitions 
• Goals: Two disjoint sets of k and l nodes 
• Coverage notion: The two sets included in different blocks 
• Size of covering families: O(f(k,l) log n) 

Minority isolation 
• Tests: Bipartitions 
• Goals: Nodes 
• Coverage notion: The node is in the smaller block 
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• Coverage notion: The two sets included in different blocks 
• Size of covering families: O(f(k,l) log n) 

Minority isolation 
• Tests: Bipartitions 
• Goals: Nodes 
• Coverage notion: The node is in the smaller block 
• Covering families: O(log n)

• k-Splitting, k,l-separation, and minority isolation  
explain most bugs found by Jepsen

• With high probability, O(log n) random partitions 
simultaneously provide full coverage for all these notions
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2. Randomly Testing Distributed Systems 

3. Wider Context: Combinatorial Testing



3. What is the notion of coverage? 
4. How to construct covering families?

General Testing Framework

Tests T Goals G

1. What are tests? 2. What are 
testing goals?



3. k-splitting coverage 
4. Random families of size O(log n) are k-splitting w.h.p.

Distributed Systems 
with Network Partitions

Tests T Goals G

1. Partitions with 
k blocks

2. Sets of 
k nodes



3. k-hitting coverage: Schedule “hits” events e1 < … < ek 
4. Hitting families of size O(log n), O(log n)k-1, O(nk-1)

Concurrent Programs

Tests T Goals G

1. Schedules 
(interleavings)

2. Ordered sets 
of k events

Program = Partially ordered set of events

Chistikov, Majumdar, Niksic. Hitting families of schedules for asynchronous programs. CAV 2016 
Burckhardt et al. A randomized scheduler with probabilistic guarantees of finding bugs. ASPLOS 2010



3. Input coincides with the chosen values on the k features 
4. Various constructions of covering arrays

Combinatorial Testing

Tests T Goals G

1. Inputs with 
many features

2. Values for 
k features

Kuhn, Kacker, Lei. Combinatorial Testing. Encyclopedia of Software Engineering. 2010
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3. What is the notion of coverage? 
4. How to construct covering families?

General Testing Framework

Tests T Goals G

1. What are tests? 2. What are 
testing goals?Where else can we apply this approach? 


