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Why Is Random Testing Effective for Partition Tolerance

Bugs?
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Random testing has proven to be an effective way to catch bugs in distributed systems in the presence of

network partition faults. This is surprising, as the space of potentially faulty executions is enormous, and the

bugs depend on a subtle interplay between sequences of operations and faults.

We provide a theoretical justification of the effectiveness of random testing in this context. First, we show a

general construction, using the probabilistic method from combinatorics, that shows that whenever a random

test covers a fixed coverage goal with sufficiently high probability, a small randomly-chosen set of tests

achieves full coverage with high probability. In particular, we show that our construction can give test sets

exponentially smaller than systematic enumeration. Second, based on an empirical study of many bugs found

by random testing in production distributed systems, we introduce notions of test coverage relating to network

partition faults which are effective in finding bugs. Finally, we show using combinatorial arguments that for

these notions of test coverage we introduce, we can find a lower bound on the probability that a random

test covers a given goal. Our general construction then explains why random testing tools achieve good

coverageÐand hence, find bugsÐquickly.

While we formulate our results in terms of network partition faults, our construction provides a step

towards rigorous analysis of random testing algorithms, and can be applicable in other scenarios.
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1 INTRODUCTION

Large-scale distributed systems are difficult to build and test. On top of the non-determinism arising
out of concurrent exchange of messages, these systems must account for partial failures, where
components or communication can fail along the way and produce incomplete results. Fault-tolerant
components are difficult to design and reason about, and usually require intricate protocols to
ensure correct behavior for the global system. Even if individual components are correct, their
composition may require further protocols to operate correctly under failure conditions. Thus,
distributed systems are some of the most complex pieces of software. Given the critical role these
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systems play today, gaining high assurance of their behavior under failure conditions is a critical
challenge [Lopes 2016; McCaffrey 2015].
While there is a lot of research in systematic state space exploration under faulty conditions

[Alvaro et al. 2015; Deligiannis et al. 2016; Fisman et al. 2008; Gunawi et al. 2011; Kupferman
et al. 2008; Leesatapornwongsa et al. 2014; McCaffrey 2015; Yang et al. 2009], practitioners mostly
resort to much simpler techniques of testing with randomly inserted faults, and achieve remarkable
success in finding bugs [Apache Hadoop 2016; Claessen et al. 2009; Izrailevsky and Tseitlin 2011;
Kingsbury 2017; Scott 2016]. For example, Jepsen [Kingsbury 2017] is a framework for black-box
testing of distributed systems under partition faultsÐfaults that prevent portions of a system to
communicate with other portions. Jepsen provides an infrastructure to set up a number of processes
and exercise a system with random operations as well as randomly introduced partition faults.
Using Jepsen, Kingsbury [2013] found a remarkably large number of rather subtle problems in
many production distributed systems.
The success of random testing in Jepsen and similar tools presents a conundrum. On the one

hand, academic wisdom asserts that random testing will be completely ineffective in finding bugs in
faulty systems other than by łextremely unlikely accidentž: the probability that a random execution
stumbles across the łrightž combination of circumstancesÐfailures, recoveries, reads, and writesÐis
intuitively so small that any soundness guarantee for a given coverage goal, even probabilistic,
would be minuscule (many systematic testing papers start by asserting that random testing does
not or should not work). On the other hand, in practice, random testing finds bugs within a small
number of tests.
In this paper, we provide a theoretical understanding for the empirical success of Jepsen in

exposing subtle problems. To this effect, we first introduce some test coverage notions related to
network partitions and show that many bugs discovered by Jepsen can be explained in terms of
these notions. For each coverage notion, we specify coverage goals, tests, and what it means for a
test to cover a goal. We show that the probability of covering a single goal with a random test is
not astronomically small, as might be expected; in fact, in each case the probability can be bounded
from below by a sufficiently łhighž constant. We then give a general combinatorial construction
that uses this bound to show that a łsmallž set of random tests would achieve full coverage with
overwhelming probability. Our construction is not specific to Jepsen: it is applicable to random
testing in general, as long as there is a positive bound on the probability of covering a single goal.

Coverage notions. Most bugs in distributed systems found by Jepsen can be manifested by tests
of the following nature (see Section 2 for examples). First, a small sequence of operations łsets upž
the system in a special state. Then, a carefully chosen network partition separates the system into
two or more blocks which cannot communicate among each other. Then, a further sequence of
operations are performed, often in each of the different blocks of the partition. Finally, the partition
is healed and a final set of operations are performed. This sequence (perform operations, introduce
failures, perform further operations) may need to be repeated a few times at most. Depending on
the nature of the network partition introduced, we introduce and study the following coverage
notions.

k-Splitting. Consider a distributed application consisting of processes a1, . . . , an . We fix k > 0, and
consider partitions of the network into k disjoint blocks. Intuitively, we want to test the application
for all possible ways of splitting the processes into k different groups. That is, for every k processes,
we would like to test what happens if these k processes cannot communicate with each other. This
is formalized using the notion of splitting coverage. A k-partition splits processes ai1 , ai2 , . . . , aik
if these processes all end up in different blocks of the partition. The splitting coverage asks that
for every choice of k processes there is a test that splits them. For example, our application could

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 46. Publication date: January 2018.



Why Is Random Testing Effective for Partition Tolerance Bugs? 46:3

involve two different types of quorums, and for each quorum there could be a leader (cf. Chronos
in Section 2.3). A bug may occur if the two leaders are unable to communicate. Since we a priori do
not know which two processes are leaders, we want tests such that for every pair (a,b) of processes,
there is a test where a network failure partitions the system into two blocks such that the processes
a and b cannot communicate with each other. This is an example of splitting coverage for k = 2. For
the Jepsen bugs, values k = 2 and k = 3 sufficed for all bugs that fall under the scope of splitting
coverage.

(k ,l )-Separation. Processes in distributed applications often have a role. For example, processes
may be clients, or replicas of shared state, or replicas managing consensus protocol (e.g., Zookeeper
instances). Thus, a natural requirement is to ensure certain subsets of roles stay together in a split
and are separated from some other subset. This is formalized using the notion of separating coverage:
for fixed k ,l > 0 and every pair of collections of k and l roles, separating coverage requires that the
collection of k roles is separated by a partition from the collection of l roles. For example, suppose
our application is a sharded system, where each shard is replicated with a replication factor f = 3.
A bug may occur if the leading replica is separated from the two following replicas. Again, since we
a priori do not know which processes form the set of replicas, and which one among them is the
leader, we want tests such that every choice of one and two processes are separated by a partition.
This is an example of splitting coverage for k = 1 and l = 2. Again, for bugs reported by Jepsen,
values of k and l up to 3 suffice for all bugs that fall under the scope of separating coverage.

Minority isolation. In addition to separating small subsets of processes, we often wish to impose
cardinality constraints. For example, it is important to cover cases in which the current leader is in
the block of a partition with fewer nodes in order to force a new leader election. To study this, we
introduce the notion of minority isolation: for each process, this coverage notion requires that the
process is in the smaller block of a bipartition.

Empirically, these coverage notions capture a large class of fault tolerance bugs found by Jepsen
in distributed systems. In each case, for a fixed coverage goal (a process, a set of k processes, or a
pair of k and l processes) we show we can bound the probability that a random test (a bipartition
or a k-partition) covers the goal (isolates, splits, or separates the processes). The bound depends on
parameters k ,l , but does not depend on nÐthe size of the system. This allows us to construct small
families of tests that cover all goals with high probability by picking sufficiently many tests (we
provide upper bounds) uniformly at random. Our results thus provide a theoretical justification for
the effectiveness of random testing in this domain.
One caveat is the notion of a łbug.ž A famous result from distributed systems, called the CAP

theorem [Brewer 2000; Gilbert and Lynch 2002], asserts that no distributed system can be simulta-
neously consistent (roughly, linearizable), available, and partition tolerant. The precise intension
of CAP and guarantees provided by specific systems is a matter of considerable debate in the
systems community [Brewer 2012]. For example, under partitions, a distributed database may give
up availability or consistency. However, in real systems, programmers navigate a rich space of
tradeoffs with many relaxed notions of availability or consistency. What constitutes a correct test
oracle is usually up to the programmers of the system to decide (see, e.g., Kingsbury [2013], and
discussions on his bug reports on github). In this paper, we do not specify the property used to
determine whether an error has occurred: we only guarantee that all coverage goals are met. It is
up to the programmer to write appropriate test oracles to check for problems.

Constructing covering families. Provided we have a positive lower bound on the probability that
a random test from a space of tests meets a fixed coverage goal, we can construct a family of tests
of bounded size which meets all coverage goals with high probability. Our construction uses the
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probabilistic method [Alon and Spencer 2004], a technique from combinatorics that proves the
existence of a combinatorial object without giving an explicit construction. In this technique, in
order to show that a combinatorial object with certain properties exists, one argues that a randomly
chosen object from a suitable probability space has the property with positive probability. Since
the probability is positive, there must be at least one objectÐwe do not know which oneÐwith
that property. If the probability of existence is sufficiently high, by repeating the construction a
number of times, one can amplify the probability to make it overwhelmingly likely that a randomly
sampled object has the property, even when we may not have any deterministic construction for
such an object!
To see the connection to testing, assume we have a distributed system of size n, a space of

coverage goals parameterized by some constants k ,l assumed to be much smaller than n (e.g.,
coverage goals discussed above), and a space of tests (e.g., schedules of operations and partitions
simulating failures in the system). A given test can cover one or more coverage goals. Our objective
is to find a small covering family: a small set of tests that covers all the coverage goals. Here, łsmallž
means potentially exponential in k and l , but logarithmic or linear in n. We invoke the probabilistic
method to show that a small covering family exists, and that a randomly chosen small set of tests
is overwhelmingly likely to be a covering family. The outline of the argument is as follows. Fix
a coverage goal and suppose that a randomly chosen test satisfies the goal with probability at
least p > 0. Then, a set of N independently chosen random tests does not cover this goal with
probability at most (1 − p)N , and it is not a covering family with probability at mostm · (1 − p)N
(by the union bound), wherem ≈ poly(n) is the number of coverage goals. By picking N to be
Ω(p−1 log(m)), this probability can be made less than 1, showing that a covering family of this size
exists. Moreover, for a given ϵ > 0, by picking N to be Ω(p−1 (logm − log ϵ )), the probability can
be made less than ϵ , showing that a family of N randomly chosen tests is a covering family with
probability at least 1 − ϵ . Thus, by running all tests from the constructed family, we are guaranteed
with high probability that we have run at least one test for each coverage goal.

We summarize the main contributions of our paper.

(1) We introduce and study notions of test coverage for distributed systems with network
partition faults. We show that our coverage notions can explain many different bugs found
in production systems.

(2) We provide a general combinatorial construction relating the probability that a random test
covers a coverage goal to the size of a random test set that is overwhelmingly likely to provide
full test coverage. This result applies to any random testing methodology.

(3) Specifically, for the coverage notions introduced in Item (1), we provide explicit lower bounds
on the probability using combinatorial arguments.

Together, our results imply that a small set of randomly chosen tests can already provide full
coverage in distributed systems for coverage criteria empirically correlated with bugs.

While we focus on partition tolerance, our general construction provides a general technique for
a rigorous treatment of random testing. We show our main construction also shows the existence of
small covering families for certain random testing procedures for multi-threaded and asynchronous
programs [Burckhardt et al. 2010; Chistikov et al. 2016], for feature interactions [Kuhn et al. 2010],
and for VLSI circuits [Seroussi and Bshouty 1988].

2 MOTIVATING EXAMPLES

The CAP theorem [Brewer 2000; Gilbert and Lynch 2002] states that a distributed system running
on an unreliable network cannot simultaneously satisfy consistency, availability, and partition
tolerance. Since the network is unreliable and network partitions do happen, at first glance this
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means a system has to make a choice between consistency and availability. However, in reality the
situation is far from binaryÐvarious levels of consistency and availability form a rich landscape of
tradeoffs, which system developers have to navigate knowingly or unknowingly. While doing so,
they inevitably encounter pitfalls.

While there are certainly intricate pitfalls that are exposed only in extremely rare combinations
of events and failures, many problems in existing systems are discoverable by random testing. An
evidence to this is a series of online articles by Kingsbury [2017], describing in-depth analyses
of distributed systems within a testing framework called Jepsen.1 Using Jepsen, Kingsbury has
analyzed and discovered issues in a whole range of distributed systems: etcd, Postgres, Redis,
Riak, MongoDB, Cassandra, Kafka, RabbitMQ, Consul, Elasticsearch, Aerospike, Zookeeper, and
Chronos, to name a few. In each case, the approach is similar: a system under scrutiny is subjected
to random sequences of operations under failure modes such as random network partitions. The
recorded behavior of the system is then analyzed against a model to establish its correctness. The
Jepsen framework provides a scripting framework to define operations, failure modes, correctness
conditions, and checkers specific to a particular system. While setting up all these things for a given
system need not be simple and often requires a lot of intuition and understanding of the system,
in most cases, the test, once set up, uncovers subtle issues within seconds, even with random
sequences of operations and partitions.
In the rest of the section, we showcase a few typical bugs found by Kingsbury and use them to

motivate notions of coverage we study in Section 4.

2.1 Etcd

Etcd is a distributed key-value store.2 It is intended to be used for storing small amounts of critial
data, which a complex distributed application might need for service coordination, distributed
locking, write barriers etc. Hence, etcd’s foremost design goal is to provide strong consistency. To
achieve this, operations are commited through consensus, for which etcd uses an implementation
of the Raft algorithm [Ongaro and Ousterhout 2014].
Since consensus requires communication between nodes, it may be unachievable while the

network is partitioned. Hence, strong consistency in this case comes at the expense of reduced
availability. In order to improve availability, in etcd’s API version 2, read operations by default
do not go through consensus. Instead, a node responds to a read request by simply returning the
local copy of the value. This design choice is an example of a tradeoff between consistency and
availability.

But what exactly is the manifestation of this tradeoff on the consistency side? We can check this
with a Jepsen test. We set up etcd on five nodes and start five clients to issue random read, write,
and compare-and-swap operations on a single key. Additionally, we start a special process (called
nemesis in Jepsen) to randomly partition the network into two blocks to simulate network failures.
We record a history of execution, and analyze it for linearizabilityÐeach operation should give an
appearance of being executed atomically between its invocation and completion.
Figure 1 (left) shows an inconsistent state found by Jepsen. The arrows łw iž and łrž refer to

client requests to write the value i or to read the shared state, respectively (for simplicity, we omit
the key), and łw okž and łr iž denote the system responses confirming the write and returning the
value read, respectively. The blue rectangle shows the Raft consensus. In the picture, time flows
downward, and the values show each node’s own view of the shared state. The red line marks
a network partition that separates n1 and n4 from n2, n3, and n5. A write of the value 1 after the

1http://jepsen.io/
2https://github.com/coreos/etcd
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n1 n4 n2 n3 n5
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Fig. 1. Non-linearizable execution histories in etcd. On the left, the read operation is invoked in the default

modeÐreturning the local copy of the valueÐand on the right it is invoked in the consistent modeÐredirecting

the request to the Raft leader.

partition triggers a new leader election in Raft, after which the new value is committed (by the
right block). The inconsistent behavior is that after the partition, the node n1 returns its local stale
value 0 even though it is not part of the quorum.

The developers of etcd were aware of this behavior. To give users stronger consistency, the
read API provides an option called consistent, which causes nodes to redirect read requests to the
leader elected as part of the Raft consensus algorithm. This option is another example of navigating
the CAP landscape: we seemingly avoid both the overhead of full consensus and the inconsistent
behavior. Unfortunately, the same Jepsen test setup quickly discovers another inconsistency, shown
in Fig. 1 (right). Assume that n4 was the Raft leader to begin with. The write request w 0 is
committed. At this point, the network partition separates n1 and n4 from the rest. Realizing that
the leader is unavailable, nodes in the larger block elect n3 as the new leader and successfully
commit a new write of the value 1. Nodes n1 and n4 are unaware of the new leader election. Thus,
n1 forwards a read request to n4, which returns the stale value 0. The problem is still that reads do
not require consensus, so the smaller block does not realize the leader has changed.

Since the author of Jepsen reported this behavior3, the developers of etcd have included another
option for read called quorum. With this option, reads are commited through consensus the same
way writes are. More recently, consensus for all operations has become the default behavior in the
etcd API version 3.

2.2 Kafka

Kafka4 is a distributed streaming system: it provides streams of records to which clients can publish
or subscribe. To achieve scalability and fault-tolerance, records in Kafka’s streams are partitioned
into shards, and each shard is replicated by a set of in-sync replicas (ISR). Within an ISR, one
node is designated as a leader: for leader election, Kafka uses Zookeeper5, a distributed key-value
store with strong consistency guarantees similar to etcd. The leader accepts write requests from
clients and forwards them to all replicas in the ISR. When it receives acknowledgements from all
replicas, it acknowledges the client. If a replica fails to acknowledge a request, the leader detects
the request has timed out, and removes that node from the ISR. Remaining writes only have to be
acknowledged by the healthy nodes still in the ISR. Should the leader ever fail, any replica in the
ISR can take over, since all of them maintain the same history of records. In this way, Kafka can
theoretically tolerate f − 1 failures with f replicas.

3https://github.com/coreos/etcd/issues/741
4https://kafka.apache.org/
5http://zookeeper.apache.org/
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a zk b cw

w ok w

w ok

Fig. 2. A diagram of an inconsistent behavior in Kafka.

Note that with up to f − 1 failures Kafka provides both linearizabilityÐall nodes in the ISR
replicate records in the same orderÐand high availabilityÐunresponsive nodes are automatically
removed from the ISR. According to the CAP theorem, Kafka has to give up partition tolerance.
The following Jepsen test, reported by Kingsbury (see Fig. 2), shows not only that Kafka gives
up partition tolerance, but that in presence of network partitions a single node failure can cause
writes committed to the system to be lost. In a system consisting of a Zookeeper node and three in-
sync-replicas a, b, c , with a being the leader, nodes b and c are separated from a and the Zookeeper
node. Realizing that nodes b and c are unavailable, a shrinks the ISR to just itself, and continues
processing writes from the client. Node a then crashes (simulated by a partition that separates a
from all other nodes), and the system enters a state called unclean leader election, in which any of
the nodes b and c (whichever comes to life first) can be elected as a new leader. However, once the
new leader starts processing writes, all intermediate writes processed by node a are lost.

2.3 Chronos

The third and most complex bug is from Chronos6, a distributed and fault-tolerant job scheduler.
Chronos is meant to schedule jobs with complicated dependency and periodicity specifications at
the correct times. It is used in conjunction with Mesos7Ða cluster management system that takes
care of managing resources such as CPU and memory in a cluster. Both systems further depend on
Zookeeper as a consistent data store.

There are three kinds of quorums involved in the system. First, Chronos has tomaintain consensus
over job scheduling, so Chronos nodes have a notion of leader and followers. Second, Mesos nodes
are divided into łslaves,ž which offer resources and ultimately run jobs, and łmasters,ž which take
care of resource and job allocation. The latter also requires consensus, so Mesos masters have their
own notion of leader and followers. And third, Zookeeper is a consistent data store and needs to
maintain consensus over executed operations, so it also has a notion of leader and followers.

All three kinds of leaders need to be able to communicate. Chronos and Mesos need Zookeeper
for their internal coordination, but also for mutual discovery. It is thus not difficult to imagine
partitions among these nodes may cause problems.

Kingsbury tested the system on five nodes n1, . . ., n5. All five serve at the same time as Chronos
and Zookeeper nodes. Additionally, nodes n2, n3, and n4 are Mesos masters and the remaining
two are Mesos slaves. During the test, simple jobs are generated and emitted, while the nemesis
randomly partitions the network into two blocks and heals it back after some time. At the end, a
checker examines the history to see whether all jobs were executed at correct time.

Not suprisingly, as soon as the Chronos leader is separated from the Zookeeper leader, problems
start. In this case Chronos sometimes abruptly crashes, which turns out to be an undocumented
but expected behavior8Ðthe programmers considered this to be a conservative way of preventing

6https://mesos.github.io/chronos/
7http://mesos.apache.org/
8https://github.com/mesos/chronos/issues/513
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reg ok
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ail

Fig. 3. A diagram of a bug in Chronos that prevents jobs from being executed.

inconsistencies while Zookeeper is unavailable. Suprisingly, however, in the same situation Chronos
sometimes does not crash for unknown reasons.9 This behavior is marked as a bug and was
unresolved at the time this paper was written.

The case when Chronos does not crash uncovered another bug10 that has meanwhile been fixed.
The observed execution is illustrated in Fig. 3. Initially all three subsystemsÐChronos, Mesos, and
ZookeeperÐgo through leader election. Node n1 becomes Chronos leader (blue timeline), node n3
becomes Mesos leading master (orange timeline), and node n5 becomes Zookeeper leader (green
timeline). Chronos registers a new framework with MesosÐthis is depicted by an exchange of
messages łregž and łreg okž between n1 and n3Ðand starts scheduling jobs (omitted for simplicity).
Next, a network partition separates n1 and n2 from n3, n4, and n5. Chronos leader detects Zookeeper
connection loss, but does not crash. After another round of elections, n3 becomes Chronos leader,
and n4 becomes Mesos leading master. The partition is resolved, n1 detects the Zookeeper leader
and recognizes n3 as the new Chronos leader.
At this point Chronos tries to register as a completely new framework with Mesos, instead of

re-registring as the original framework. Since according to Mesos all resources in the cluster are
owned by the original framework, there are no available resources for the new framework, and as
a consequence no new jobs are ever started again.

2.4 Summary and Coverage Notions

In each of these examples, the test setup to manifest the misbehavior involved: setting up and
running the system with a number of nodes and clients; running a random sequence of operations
(reads, writes, etc.) to put the system in a specific state; introducing one or more carefully orches-
trated partitions of the network; running a further sequence of operations, and optionally, further
partitions of the network to demonstrate a violation. Jepsen provides an API to programmatically
manage all these steps. In most Jepsen experiments, though, picking each of these steps randomly

demonstrated the misbheaviors.
While the original Jepsen traces contain hundreds or thousands of events, the analysis of Kings-

bury shows that for most bugs one requires a small number of łrounds,ž consisting of a small number
of operations and one or two carefully chosen partitions in the system. In particular, the bugs in
Chronos were exposed with a partition separating the Chronos leader from the Zookeeper leader.
The inconsistency in Kafka was exposed with a partition separating node a and the Zookeeper node
from nodes b and c . The inconsistencies in etcd were exposed with a partition isolating the Raft

9 https://github.com/mesos/chronos/issues/522
10https://github.com/mesos/chronos/issues/520
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leader in a smaller block, while the system received a write request in the larger block, followed by
a read request in the smaller block.
Accordingly, we study the following coverage notions.

k-splitting Given a set of k nodes, the coverage goal is to split them with a network partition,
that is, place each node in a separate block of the partition. The coverage problem is to split
every set of k nodes with a family of partitions.

k ,l-separation Given two sets of nodes of size k and l , the coverage goal is to separate them
with a network partition, that is, place the set of k nodes in one block and the set of l nodes
in another block. The coverage problem is to separate every pair of sets of size k and l with a
family of partitions.

minority isolation Given a node x in a system with n nodes, the coverage goal is to isolate

x in a minority blockÐa block containing less than n/2 nodes. The coverage problem is to
isolate every element in a minority block with a family of partitions.

In addition to these coverage notions relating to network partitions, we require a set of operations
to occur before or after the partition. Thus, we also study the following notion:

sequences of operations Given a sequence ofk operations, the coverage problem is to observe
this sequence as a contiguous subsequence of a larger sequence.

Our goal is to combine partition coverage with coverage w.r.t. short sequences of operations.
The test exposing the bugs in Chronos is an example of k-splitting with k = 2, but also of k ,l-

separationwithk = l = 1, as the two notions overlap in this case. The test exposing the inconsistency
in Kafka is an example of a sequenced k ,l-separation: we need to observe a 2,2-separating partition
followed by a 1,3-separating partition. Finally, the test exposing the inconsistencies in etcd is
an example of minority isolation combined with a sequence of two operations. In each case, the
separation is accompanied with short sequences of operations (e.g., reads or writes). Our results
show that in each of these cases a small number of randomly generated partitions and operations
achieves full coverage with overwhelming probability.
It is worth mentioning that our coverage notions are not specifically tied to the three systems

we picked as examples. In fact, almost all anomalies discovered and described by Kingsbury fall
under one or more of our coverage notions. There is, however, an exception: a split-brain issue
in Elasticsearch11 involving an intersecting partitionÐone in which blocks are not disjoint. In this
particular issue, a node acts as a bridge between two otherwise disconnected blocks and facilitates
a situation in which two nodes on the opposite sides of the partition become leaders and start
processing write requests from clients. Note that an intersecting partition {X ,Y }, where Z = X ∩Y
is nonempty, can be modeled by a partition {X \ Z ,Z ,Y \ Z }. Therefore, the Elasticsearch issue
would fall under a straightforward generalization of k ,l-separation with an additional block, and
our techniques would apply. We omit this generalization for simplicity.

3 A GENERAL CONSTRUCTION

We first state and prove a general theorem on test coverage. We leave the notions of coverage goals,
tests, or the notion of covering abstractÐwe will instantiate these notions in specific cases.

LetM be a nonempty set of coverage goals. Let T be a set of tests. A test t ∈ T may or may not
cover a coverage goal. A nonempty set F of tests is a covering family forM if for each x ∈ M , there
is a test t ∈ F such that t covers x .

Theorem 3.1. Let M be a set ofm coverage goals. Let p > 0 be a lower bound on the probability

that a random test t ∈ T covers a fixed coverage goal. Given ϵ > 0, let F be a family of tests chosen

11https://github.com/elastic/elasticsearch/issues/2488
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independently and uniformly at random such that |F | ≥ p−1 (logm − log ϵ ). Then F is a covering

family with probability at least 1 − ϵ . Moreover, there exists a covering family of size
⌈

p−1 logm
⌉

(or 1

ifm = 1).

Proof. Consider a fixed coverage goal x . A random test does not cover x with probability at
most 1 − p. Since the tests in F are chosen independently, the probability that F does not cover
x is at most (1 − p) |F | . By the union bound, the probability that there exists a coverage goal not
covered by F is at mostm(1 − p) |F | .

Ifm > ϵ , using |F | ≥ p−1 (logm − log ϵ ) and the fact that p < − log(1 − p), we get

|F | > − logm + log ϵ
log(1 − p) = log1−p (m

−1ϵ ) .

Note that this trivially holds ifm ≤ ϵ . Therefore, in both casesm(1 − p) |F | < ϵ , and the probability
that F covers all coverage goals is at least 1 − ϵ . In particular, if we take ϵ = 1, the probability that
F covers all objects is positive. By the probabilistic method, there must exist a covering family of
size ⌈p−1 logm⌉, or 1 ifm = 1, since a covering family needs to be nonempty. □

There is always a trivial covering family of size |M | (assuming each coverage goal can be covered
by some test). The key observation in Theorem 3.1 is that there exist covering families of size
proportional to log|M |; thus, if we can show the probability p is łhigh,ž we can get an exponentially
smaller covering family of tests. Moreover, a randomly chosen test set can cover all goals with high
probability.
Before diving into Section 4 where we analyze network partitions, let us demonstrate how

Theorem 3.1 can be used to analyze the coverage notion involving sequences of operationsmotivated
in Section 2.4. Suppose we have r ≥ 1 different operations, and we are generating a sequence of
operations s uniformly at random. Suppose we also have a setT of target sequences of length k ≥ 1,
and we want to observe any target sequence t ∈ T as a contiguous subsequence of s .

Theorem 3.2. Let ϵ > 0, let T be a set of sequences of operations of length k ≥ 1, and let

s be a sequence of n ≥ 1 operations chosen independently and uniformly at random such that

n ≥ k − krk |T |−1 log ϵ . Then some target sequence t ∈ T is a contiguous subsequence of s with

probability at least 1 − ϵ .

Proof. Split the sequence s into ⌊n/k⌋ non-overlapping subsequences of lengthk . The probability
that some t ∈ T occurs among these subsequences is clearly lower than the probability that some
t ∈ T occurs in s . However, we can think of the non-overlapping sequences as ⌊n/k⌋ sequences of
length k generated independently and uniformly at random.

The probability that one of these sequences matches a sequence in T is p = |T |/rk . The number
of coverage goals in this case ism = 1, namely any target sequence t ∈ T . Since ⌊n/k⌋ > n/k − 1,
we have

⌊n/k⌋ > −rk |T |−1 log ϵ = p−1 (logm − log ϵ ) .
Hence the result follows from Theorem 3.1. □

Example 3.3. Consider the inconsistency in etcd on Fig. 1 (left). In order to expose it, we need
to observe a right combination of read and write operations during a network partition with two
blocks. Note that it does not really matter how the network is partitioned, as long as we follow up
with a write that changes the value in the larger block, and a read to any node in the smaller block.
For simplicity, assume we only have three kinds of operationsÐread, write 0, and write 1Ðand
each can be directed to any of the five nodes involved in the experiment. Thus, in total we have
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15 operations, each occurring with equal probability.12 We form an amalgamated operation by
conjoining a partition with two read or write operations. Assuming partitions are balanced, this
gives us a total of r = 10 · 15 · 15 = 2250 amalgamated operations. Our target operations consist of
a partition followed by one of two read operations and one of three write operations. Thus the set
T of target amalgamated operations has size 10 · 2 · 3 = 60. Applying Theorem 3.2 with k = 1, we
see that in a sequence of 61 amalgamated operations, we would observe a target operationÐand
thus expose the inconsistencyÐwith probability at least 80%. □

4 RANDOM PARTITIONS

In this section we study the coverage notions introduced in Section 2.4 as instances of the general
construction from Section 3. We start with combinatorial preliminaries about set partitions.

4.1 Combinatorial Preliminaries

Throughout this section, letU = {1, . . . ,n} be a fixed set (a łuniversež) of n elements. A partition of
U is a set of nonempty subsets ofU that are pairwise disjoint and in the union give the wholeU .
We refer to the sets in a partition as blocks. If a partition has k blocks, we call it a k-partition. A
balanced partition is a partition with blocks differing in size at most by 1.
Let us recall a few results about partitions. The number of k-partitions is given by a quantity

called Stirling number of the second kind, denoted
{

n
k

}

and read łn subset kž [Graham et al. 1994]. It

is not difficult to see that
{

n
1

}

=

{

n
n

}

= 1 whenever n ≥ 1. Moreover,
{

n
2

}

= 2n−1 − 1, as a 2-partition
is uniquely determined by the block that does not contain the nth element, and this block needs to
be nonempty. In general, Stirling numbers of the second kind satisfy the following recurrence:

{

n

k

}

=

{

n − 1
k − 1

}

+ k

{

n − 1
k

}

. (1)

Combinatorially, we can partition n elements into k blocks by partitioning the first n − 1 elements
into k − 1 blocks and adding a singleton block consisting of the nth element, or by partitioning the
first n − 1 elements into k blocks and placing the nth element into one of these blocks in k ways.

Lemma 4.1. For every n ≥ 1 and k such that 1 ≤ k ≤ n, we have
{

n

k

}

k! ≤ kn .

Proof. The quantity on the right-hand side is the number of all functions from an n-element set
to a k-element set, while the quantity on the left-hand side is the number of such functions that are
surjective. To see this, note that a surjection induces a k-partition of the domain, and the induced
blocks map to the codomain in one of k! ways. □

For a fixed k ,
{

n
k

}

asymptotically approaches kn/k!. Intuitively, if we randomly assign n elements

into k buckets and n is large, it is unlikely one of the buckets will be empty. Therefore, the difference
between the left-hand side and right-hand side in Lemma 4.1 will be small.

4.2 Splitting Families

We formalize the notion of k-splitting from Section 2.4 using k-splitting families.

12In the real Jepsen experiment, clients were also issuing compare-and-swap operations with values ranging from 1 to 5,

and the probability distribution over operations was not uniform.
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Definition 4.2. Given k , let P be a k-partition ofU and let S = {x1, . . . ,xk } ⊆ U . We say P splits

S if P = {B1, . . . ,Bk } and x1 ∈ B1, . . . ,xk ∈ Bk . We say a family F of k-partitions is a k-splitting
family if for every subset S ⊆ U there is a partition in F that splits S .

As the following theorem shows, for a given fixed set S of k elements, the probability that a
random k-partition splits S is bounded from below by a constant that depends only on k .

Theorem 4.3. Let S ⊆ U be a set of k elements, and letp be the probability that a random k-partition

splits S . Then p = kn−k/
{

n
k

}

≥ k−kk!.

Proof. A k-partition that splits S is uniquely determined by a mapU \S → S that maps x ∈ U \S
to y ∈ S if x and y are in the same block of the partition. Hence, the probability that a random

k-partition splits S is p = kn−k/
{

n
k

}

. From Lemma 4.1 it follows that p ≥ k−kk!. □

Thus, splitting families are a special case of the general construction from Section 3: a coverage
goal here is a subset of U of size k , a test is a partition ofU with k blocks, and a covering family is
a k-splitting family. We have the following corollary as an instance of Theorem 3.1.

Corollary 4.4. Let ϵ > 0 and let F be a family of k-partitions chosen independently and uniformly

at random such that |F | ≥ kk+1 (k!)−1 logn − kk (k!)−1 log ϵ . Then F is k-splitting with probability

at least 1 − ϵ . Moreover, there exists a k-splitting family of size
⌈

kk+1 (k!)−1 logn
⌉

.

Proof. By Theorem 4.3, a fixed subset of U of size k is split by a random k-partition with

probability p ≥ k−kk!. Moreover, the number of subsets ofU of size k ism =
(
n
k

)

≤ nk . Therefore,

|F | ≥ p−1 (logm − log ϵ ), and the result follows from Theorem 3.1. □

In the case of k = 2, the most common case in Jepsen, we can get a more precise bound.

Corollary 4.5. Let ϵ > 0 and let F be a family of 2-partitions chosen independently and uniformly

at random such that |F | ≥ 2 log2 n − log2 ϵ − 1. Then F is 2-splitting with probability at least 1 − ϵ .
Moreover, there exists a 2-splitting family of size

⌈

2 log2 n − 1
⌉

.

Proof. We get this slightly more precise bound by performing a more precise version of the
analysis from the proof of Theorem 3.1. Like there, we can bound the probability that F is not

2-splitting bym(1−p) |F | , withm =
(
n
2

)

and p = 2n−2/
{

n
2

}

. However, since
{

n
2

}

= 2n−1 − 1, we have
1−p < 1/2 whenever n ≥ 2. Hence,m(1−p) |F | < m2−|F | . On the other hand, sincem =

(
n
2

)

≤ n2/2,

we have |F | ≥ 2 log2 n − log2 ϵ − 1 ≥ log2 (m/ϵ ). Hence,m(1 − p)−|F | < m2−|F | ≤ ϵ . □

Remark 4.6. Note that the probabilistic construction in Corollary 4.5 is sub-optimal and that
there is a deterministic construction of a 2-splitting family of size ⌊log2 n⌋ + 1. To see this, take
the binary representation of the elements in the universe. For each position i ∈ {0, . . . , ⌊log2 n⌋},
consider the partition obtained by separating all elements which have a 0 in the ith position from
all elements which have a 1 in the ith position. Clearly, this set of ⌊log2 n⌋ + 1 partitions forms a
2-splitting family. □

Corollary 4.4 suggests that we can get k-splitting families with high probability by generating
sufficiently many (logarithmically in n) k-partitions uniformly at random. But how do we generate
a k-partition uniformly at random? We can do it recursively using the basic recurrence for Stirling
numbers (1). The base cases are k = 1 (we generate a single block containing n elements) and k = n
(we generate n singleton blocks). Otherwise we choose between partitioning the first n− 1 elements
recursively into k − 1 or k blocks with the following respective probabilities:

{

n − 1
k − 1

}/{

n

k

}

and k

{

n − 1
k

}/{

n

k

}

. (2)
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In the former case we add to the k − 1 blocks a singleton block consisting of the nth element, and
in the latter case we place the nth element into one of the k blocks uniformly at random.
It is not difficult to see that the described procedure indeed gives us k-partitions uniformly at

random. However, the intermediate probabilities (2) involve computing Stirling numbers, which
grow exponentially in n. Fortunately, due to the following theorem, it suffices to restrict ourselves
to balanced partitions, which are much easier to generate uniformly at random: we generate a
random permutation of the setU and split it into k balanced blocks.

Theorem 4.7. Let S ⊆ U be a set of k elements, let p be the probability that a random k-partition

splits S , and let pb be the probability that a random balanced k-partition splits S . Then pb ≥ p.

In order to prove Theorem 4.7, we need an auxiliary combinatorial lemma of independent
interest.13

Lemma 4.8. Let n,k ∈ N, and letm = n mod k . Then,

kn−k
(

n

k

)

≤
⌈

n

k

⌉m ⌊

n

k

⌋k−m{

n

k

}

.

Proof. LetM be a binary matrix whose rows are indexed by k-partitions and columns by subsets
of U of size k , and such that an entry corresponding to partition P and set S is 1 if and only if P
splits S . We count the number of ones in the matrix in two different ways.
The number of ones in a column indexed by set S is the number of k-partitions that split S . As

argued in the proof of Theorem 4.3, this number is kn−k . Hence the total number of ones inM is

kn−k
(
n
k

)

. On the other hand, the number of ones in a row indexed by partition P = {B1, . . . ,Bk } is
the number of sets split by P . It is not difficult to see this number is |B1 | · · · |Bk |. Summing over all
k-partitions, we get

kn−k
(

n

k

)

=

∑

P={B1, ...,Bk }
|B1 | · · · |Bk | (3)

Note that the product B = |B1 | · · · |Bk | attains its maximal value for a balanced partition. For
suppose the partition is not balanced; then there are blocks Bi and Bj such that |Bi | − |Bj | ≥ 2. From
these we obtain blocks B′i and B

′
j bymoving an arbitrary element from Bi to Bj . Let B

′
= B/( |Bi | |Bj |);

for the new product we have:

B′ |B′i | |B′j | = B′( |Bi | − 1) ( |Bj | + 1)
= B′( |Bi | |Bj | + |Bi | − |Bj | − 1)
> B′ |Bi | |Bj |
= B

We have thus increased the value of the product.
It is not difficult to see that a balanced partition hasm blocks of size ⌈n/k⌉ and k −m blocks of

size ⌊n/k⌋. Hence the maximal value of the product |B1 | · · · |Bk | is ⌈n/k⌉m ⌊n/k⌋k−m . With this we
can bound the sum in (3) and complete the proof:

∑

P={B1, ...,Bk }
|B1 | · · · |Bk | ≤

⌈

n

k

⌉m ⌊

n

k

⌋k−m{

n

k

}

□

13Independently of the authors, a weaker variant of Lemma 4.8 was posted as Problem 11957 in the February 2017 issue of

the American Mathematical Monthly [Edgar et al. 2017]. The proof given here solves the problem.
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Proof of Theorem 4.7. We already know that p = kn−k/
{

n
k

}

. To calculate pb , we need to cal-

culate the number NS of balanced k-partitions that split S , and the number N of all balanced
k-partitions; then pb = NS/N .

Letm = n mod k . As noted earlier, a balanced k-partition hasm blocks of size ⌈n/k⌉, and k −m
blocks of size ⌊n/k⌋. In order to uniquely determine a balanced k-partition that splits S , we first
choosem elements of S that are placed in larger blocks, and then for each element of S we choose a
completion of its block fromU \ S . Thus,

NS =

(

k

m

) (

n − k
⌈n/k⌉ − 1, . . . , ⌈n/k⌉ − 1
︸                          ︷︷                          ︸

m times

, ⌊n/k⌋ − 1, . . . , ⌊n/k⌋ − 1
︸                          ︷︷                          ︸

k−m times

)

.

Similarly, in order to uniquely determine a balanced k-partition, we choose blocks of appropriate
sizes, and account for the fact that neither the order of larger nor the order of smaller blocks matters.
Thus,

N =
1

m!(k −m)!

(

n

⌈n/k⌉, . . . , ⌈n/k⌉
︸               ︷︷               ︸

m times

, ⌊n/k⌋, . . . , ⌊n/k⌋
︸               ︷︷               ︸

k−m times

)

.

After expanding the multinomial coefficients and rearranging the terms, we get

pb =

⌈

n

k

⌉m ⌊

n

k

⌋k−m / (

n

k

)

.

Hence, the inequality pb ≥ p is precisely the inequality in Lemma 4.8. □

Example 4.9. Let us get back to the Chronos example from Section 2. In order to expose the bug,
we had to split the Chronos leader from the Zookeeper leader in the set of five nodes. Corollary 4.5
tells us it is possible to do this with just 4 randomly generated partitions. Moreover, by generating
just 2 additional partitions, we ensure the probability of the split is at least 80%. The optimal 2-
splitting family in this case contains 3 partitions, and can be constructed explicitly (not randomly!)
by the construction in Remark 4.6. □

Historical note. Splitting families appear in the context of perfect hashing [Czech et al. 1997;
Fredman et al. 1984; Yao 1981]. Andrew Chi-Chih Yao calls them k-separating systems, and gives an

explicit construction of such systems of size 4k
2
(log2 n)

k−1 [Yao 1981]. He also references personal

communication with Ronald Graham for a probabilistic construction of size ek
√
k logn. Another

reference to personal communication with Ronald Graham appears in Fredman et al. [1984]. It is
very likely that Graham’s construction is similar to the one given here.

4.3 Separating Families

We now turn to the notion of k,l-separation from Section 2.4, formalized using k ,l-separating
families. In this subsection we fix two positive integers k ,l such that k + l ≤ n.

Definition 4.10. Let F be a family of 2-partitions. We call F a k ,l-separating family if for every
S = {x1, . . . ,xk } ⊆ U and T = {y1, . . . ,yl } there is a partition P = {X ,Y } ∈ F such that S ⊆ X and
T ⊆ Y .

As with splitting families, here we can also bound the probability that a random 2-partition
separates two fixed sets of size k and l , and the bound depends only on k and l .

Theorem 4.11. Let S ,T ⊆ U be sets of k and l elements, and let p be the probability that a random

2-partition separates S and T . Then p = 2n−k−l/
{

n
2

}

≥ 21−k−l .
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Proof. A 2-partition that separates S andT is uniquely determined by a mapU \ (S ∪T ) → {0,1}
that maps x ∈ U \ (S ∪T ) to 1 if and only if x is in the block of the partition that contains S . Hence,

the probability that a random 2-partition separates S and T is p = 2n−k−l/
{

n
2

}

. From the fact that
{

n
2

}

= 2n−1 − 1 it follows that p ≥ 21−k−l . □

Thus, separating families are a special case of the general construction from Section 3. A coverage
goal here is a pair (S ,T ) of disjoint sets S ,T ⊆ U such that |S | = k and |T | = l . A test is a partition
of U with two blocks, and a covering family is a k ,l-separating family. We have the following
corollary as an instance of Theorem 3.1.

Corollary 4.12. Let ϵ > 0 and let F be a family of 2-partitions chosen independently and

uniformly at random such that |F | ≥ 2k+l−1 (k + l ) logn− 2k+l−1 log ϵ . Then F is k ,l-separating with

probability at least 1 − ϵ . Moreover, there exists a k ,l-separating family of size
⌈

2k+l−1 (k + l ) logn
⌉

.

Proof. By Theorem 4.11, the probability that a random 2-partition separates two subsets S ,T ⊆ U

of size k and l is p ≥ 21−k−l . Moreover, the number of pairs of subsets (S ,T ) of size k and l is

m =
(
n
k,l

)

≤ nk+l . Therefore, |F | ≥ p−1 (logm− log ϵ ), and the result follows from Theorem 3.1. □

Example 4.13. Let us get back to the Kafka example from Section 2. By plugging k = l = 2 and
n = 4 into Corollary 4.12, we see that we can separate node a and the Zookeeper node from nodes
b and c with approximately 45 randomly generated partitions. We can get a more precise bound by

using Theorem 3.1 directly with p = 1/8 andm =
(
4
2,2

)

= 6; this tells us separation is possible with

15 randomly generated partitions.
Of course, the separation of node a and the Zookeeper node from nodes b and c does not expose

the inconsistency on its ownÐwe need two consecutive partitions, one being 2,2-separating, and
another being 1,3-separating. Suppose we alternate partitions with blocks of size 2 and 2 (first
phase), and partitions with blocks of size 1 and 3 (second phase). Fix a pair of nodes (x ,y)Ðx
representing the Zookeeper node, and y representing node a. The probability of x and y ending
up in the same block in the first phase is 1/3, and the probability of y being isolated in the second
phase is 1/4, giving an overall probability of 1/12. The number of pairs (x ,y) in a set of four nodes
is 12. Thus by invoking Theorem 3.1 directly, we get that we can expose the inconsistency with
30 alternations of the two phases, and we can expose it with probability at least 80% with 50
alternations. □

4.4 Minority Isolating Families

The next notion to analyze is the one of minority isolation. We formalize it using minority isolating
families.

Definition 4.14. Let F be a family of 2-partitions. We call F a minority isolating family if for
every x ∈ U there is a partition P = {X ,Y } ∈ F such that x ∈ X and |X | < |Y |.

The analysis of minority isolating families depends on whether n is odd or even. The two cases
differ slightly because if n is odd, there is a smaller block in every 2-partition, while if n is even, we
can split the set into two blocks of equal size. We first analyze the case when n is odd.
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Denote by p the probability that a random 2-partition isolates a fixed element x in the smaller
(minority) block. By summing over the size of the block containing x , we have:

p =
∑

0≤j< ⌊n/2⌋

(

n − 1
j

) /{

n

2

}

1 − p =
∑

⌊n/2⌋≤j<n−1

(

n − 1
j

) /{

n

2

}

=

∑

0<j≤⌊n/2⌋

(

n − 1
j

) /{

n

2

}

Subtracting the first equality from the second one gives us:

1 − 2p =
((

n − 1
⌊n/2⌋

)

− 1
) /{

n

2

}

.

Using
{

n
2

}

= 2n−1 − 1, we get:

p =

(

2n−1 −
(

n − 1
⌊n/2⌋

))
/

(2n − 2) .

Lemma 4.15. If n is odd and n ≥ 3, then p ≥ 1/3.

Proof. We show equivalently that 1 − 2p ≤ 1/3, which is equivalent to showing 3
(
n−1
⌊n/2⌋

)

≤
2n−1 + 2. We show the latter inequality by induction on n.
If n = 3, it is easy to check that the inequality holds. Assume inductively that the inequality

holds for an odd n ≥ 3; then for n + 2 we have:

3

(

n + 1

⌊(n + 2)/2⌋

)

= 3 · 4n

n + 1

(

n − 1
⌊n/2⌋

)

≤ 4n

n + 1
(2n−1 + 2) ≤ 2n+1 + 2 .

The last inequality boils down to 3n ≤ 2n + 1, which holds for every odd n. □

Corollary 4.16. Let n be odd and n ≥ 3, let ϵ > 0 and let F be a family of 2-partitions chosen

independently and uniformly at random such that |F | ≥ 3(logn − log ϵ ). Then F is a minority

isolating family with probability at least 1 − ϵ . Moreover, for an odd n ≥ 3 there exists a minority

isolating family of size ⌈3 logn⌉.
Proof. From Lemma 4.15, the probability p that a random 2-partition isolates a fixed element in

the minority block satisfies p ≥ 1/3. Moreover, in this case coverage goals are simply elements of
U , som = n. The result then follows from Theorem 3.1. □

In the case of minority isolation with an odd n, balanced 2-partitions not only give us nicer
random sampling, but improve the asymptotic bound on the size of minority isolating families.

Corollary 4.17. Let n be odd and n ≥ 3, let ϵ > 0 and let F be a family of balanced 2-partitions

chosen independently and uniformly at random such that |F | ≥ 2(1 + 1/(n − 1)) (logn − log ϵ ). Then
F is a minority isolating family with probability at least 1− ϵ . Moreover, for an odd n ≥ 3 there exists
a minority isolating family of size ⌈2(1 + 1/(n − 1)) logn⌉.
Proof. The probability that a random balanced 2-partition isolates a fixed element in theminority

block is

pb =

(

n − 1
⌈n/2⌉

) / (

n

⌈n/2⌉

)

=

⌊n/2⌋
n
=

n − 1
2n

.

Again, in this case coverage goals are elements ofU , som = n and the result follows from Theorem
3.1. □
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For completeness, let us now do the analysis with an even n. In this case, for the probability p
that a random 2-partition isolates a fixed element in the smaller (minority) block we have:

p =
∑

0≤j<n/2−1

(

n − 1
j

) /{

n

2

}

1 − p =
∑

n/2−1≤j<n−1

(

n − 1
j

) /{

n

2

}

=

∑

0<j≤n/2

(

n − 1
j

) /{

n

2

}

Subtracting the first equality from the second one gives us:

1 − 2p =
((

n − 1
n/2 − 1

)

+

(

n − 1
n/2

)

− 1
) /{

n

2

}

.

Using
{

n
2

}

= 2n−1 − 1 and noting that the two binomial coefficients in the expression are equal, the

equality simplifies to:

p =

(

2n−2 −
(

n − 1
n/2

))
/

(2n−1 − 1) .

Lemma 4.18. If n is even and n ≥ 4, then p ≥ 1/7.

Proof. We show equivalently that 1 − 2p ≤ 5/7, which is equivalent to 7
(
n−1
n/2

)

≤ 5 · 2n−2 + 1.
We show the latter inequality by induction on n.

If n = 4, it is easy to check that the inequality holds. Assume inductively that the inequality
holds for an even n ≥ 4; then for n + 2 we have:

7

(

n + 1

(n + 2)/2

)

= 7 · 4(n + 1)
n + 2

(

n − 1
n/2

)

≤ 4(n + 1)

n + 2
(5 · 2n−2 + 1) ≤ 5 · 2n + 1 .

The last inequality boils down to 3n + 2 ≤ 5 · 2n , which holds for all n. □

Corollary 4.19. Let n be even and n ≥ 4, let ϵ > 0 and let F be a family of 2-partitions chosen

independently and uniformly at random such that |F | ≥ 7(logn − log ϵ ). Then F is a minority

isolating family with probability at least 1 − ϵ . Moreover, for an even n ≥ 4, there exists a minority

isolating family of size ⌈7 logn⌉.

Proof. From Lemma 4.18, the probability p that a random 2-partition isolates a fixed element in
the minority block satisfies p ≥ 1/7. Moreover, in this case coverage goals are elements of U , so
m = n. The result then follows from Theorem 3.1. □

When n is even, balanced 2-partitions have two blocks of equal size, so we cannot use them for
minority isolation. Instead, we use 2-partitions with the smaller block of size n/2 − 1 and the larger
block of size n/2 + 1Ðwe call these semibalanced partitions.

Corollary 4.20. Let n be even and n ≥ 4, let ϵ > 0 and let F be a family of semibalanced 2-

partitions chosen independently and uniformly at random such that |F | ≥ 2(1+2/(n−2)) (logn−log ϵ ).
Then F is a minority isolating family with probability at least 1 − ϵ . Moreover, for an even n ≥ 4,
there exists a minority isolating family of size ⌈2(1 + 2/(n − 2)) logn⌉.

Proof. The probability that a random semibalanced 2-partition isolates a fixed element in the
minority block is

pb =

(

n − 1
n/2 + 1

) / (

n

n/2 + 1

)

=

n/2 − 1
n

=

n − 2
2n

.
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Again, in this case coverage goals are elements of U , so m = n and the result follows from
Theorem 3.1. □

Example 4.21. Minority isolation was motivated by the etcd example from Section 2. The number
of nodes in the Jepsen test for etcd was 5, hence according to Corollary 4.17, with 9 randomly
generated balanced partitions we will have isolated the leader in the minority block with probability
at least 86%.

As in the Kafka example, the isolation here does not expose the inconsistent behavior on its own.
We need to also consider read and write operations. As in Example 3.3, assume we only have three
operationsÐread, write 0, and write 1Ðand each operation can be directed to any of the five nodes.
Thus, in total we have 15 operations, each occurring with equal probability.

To expose the inconsistency in Fig. 1 (right), the partition first needs to isolate the leader in the
minority block, which happens with probability 2/5. As in Example 3.3, this needs to be followed
up with a write in the larger block, and read in the smaller block, which happens with probability
(2/15) · (3/15) = 2/75. Thus the overall probability of covering a fixed goal is 4/375. Since there are
five goals (any node could be the leader), full coverage is possible with approximately 150 tests,
and approximately 302 tests will ensure full coverage with probability at least 80%. □

5 OTHER APPLICATIONS

We now discuss some related work in rigorous guarantees on random testing and show how they
are instances of our theorems. One might optimistically assume that łsmallž covering families
always exist, and it is a matter of time before the appropriate probabilistic argument is found
justifying a random testing procedure. The examples below show that this is not the case and that
a rigorous treatment of testing can be quite subtle.

5.1 Hitting Families and PCT

In the context of testing asynchronous programs, Chistikov et al. [2016] introduce hitting families,
a set of schedules that ensures every sequence of d events is covered by some schedule. Hitting
families are another instance of our general notion of covering families: tests in this context are
schedules (i.e., linearizations) of partially-ordered events, coverage goals are d-tuples of events, and
a schedule covers (łhitsž) a d-tuple of events if it orders the events as they appear in the d-tuple,
not necessarily contiguously. Chistikov et al. show a probabilistic construction of a hitting family
of size d!d logn for the class of programs with n events and no dependency between them. This
result is an instance of our Theorem 3.1 with p = 1/d! andm = nd .
Chistikov et al. go further and show deterministic constructions of hitting families for events

organized as a tree. These constructions can give better bounds on the size of hitting families
than ones we would obtain from Theorem 3.1. As an example, consider a program with events
0,1, . . . ,n, where events 1, . . . ,n are linearly ordered as 1 < 2 < . . . < n, and 0 is independent of all
other events. There are n + 1 possible schedules of this program, and only one of them schedules 0
before 1, giving us a lower bound of 1/(n + 1) for the probability of covering a fixed pair of events.
The total number of coverage goals for the program is the total number of admissible pairs of
events, which is n(n + 1). Therefore, Theorem 3.1 gives us existence of a 2-hitting family of size
(n + 1) log (n(n + 1)) ≈ 2n logn. And yet, all pairs of events can be covered with precisely two
schedules: 0 < 1 < 2 < . . . < n and 1 < 2 < . . . < n < 0. This is an example where a deterministic
analysis can be asymptotically better than a probabilistic argument.

In the context of testing multi-threaded programs, Burckhardt et al. [2010] introduce a notion of
bug depth and prove a lower bound on the probability that a test sampled randomly from a carefully
constructed probability space hits a specific bug of fixed depth. They implement this technique,
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called PCT, and use it to find several bugs in multi-threaded programs. They characterize a bug of
depth d using an auxiliary notion of a directive, which is a set of additional dependencies in the
program that ensures exposure of the bug. A directive of size d essentially corresponds to a d-tuple
of events from Chistikov et al. For a fixed d , Burckhardt et al. show that a random test follows a
specific directive of size dÐthus exposing a corresponding bug of depth dÐwith probability 1

nkd−1
,

where n is the number of threads, and k is the total number of operations executed by the program.
Using the lower bound of Burckhardt et al. and directives as coverage goals, we can again apply

Theorem 3.1. In a program with k operations, there are kd directives, so there exists a covering
family of size ndkd−1 logk . Thus, as in the tree example, one cannot guarantee a łsmallž test suite.
However, in contrast to the tree example, here it is unlikely that significantly smaller families exist,
since multi-threaded programs can encode arbitrary partial orders. In fact, the same is true for
hitting families: even for d = 2, hitting families for an arbitrary partial order can grow linearly
with the number of elements [Dushnik and Miller 1941]. Thus, perhaps unsurprisingly, a łsmallž
covering family need not exist. This example shows that one cannot in general assume that there
is a covering family exponentially better than naive enumerationÐsome testing problems are
inherently hard.
The approach of Burckhardt et al. also demonstrates that obtaining a non-trivial lower bound

on the probability can require a carefully constructed probability space. A naive randomization
may only provide a trivial lower bound, and thus a trivial upper bound on the number of tests. For
example, a simple-minded approach which picks a thread at random at each step gives only an
exponential lower bound for hitting a bug of depth d . The approach of Burckhardt et al. shows that
a more sophisticated random generation strategy can be exponentially better.

5.2 Combinatorial Testing

Our results can broadly be seen as an instance of combinatorial testing [Colbourn 2004; Kuhn et al.
2010], the sub-field of testing that designs near-optimal test suites to cover all k-wise interactions
among a large number of features. Like in our case, the key insight in combinatorial testing is
that many bugs depend only on the interaction of a small number of features: in many cases,
combinations of up to 6 features suffice for detecting most bugs in industrial applications [Kuhn
et al. 2010].
The main objects studied in combinatorial testing are covering arrays. An N × n array over

values from the set {0, . . . ,v − 1} is said to be k-covering if every N × k sub-array contains all vk

possible rows (with multiple occurences allowed). For given parameters n, k , and v , the goal is
to find the smallest number of rows N (n,k ,v ) such that there exists a k-covering array of size
N (n,k ,v ) × n. Many practical approaches for constructing covering arrays of small size have been
studied, including greedy algorithms, hill-climbing algorithms, simulated annealing, and genetic
algorithms [Colbourn 2004]. Non-constructive bounds on N (n,k ,v ) are usually shown using the
probabilistic method. For example, Godbole et al. [1996] show the following bound using the Lovász
local lemma [Alon and Spencer 2004]:

N (n,k ,v ) ≤ (k − 1) logn
log

(

vk/(vk − 1)
) (1 + o(1)) .

For concrete values of k and v , more precise bounds are known. For example, N (n,3,2) ≤
7.56444 logn(1+o(1)). This bound, attributed to Roux [Godbole et al. 1996], is proved by switching
from arbitrary binary arrays to arrays with equal number of zeros and ones in each columnÐa
technique similar to our switching from arbitrary partitions to balanced and semibalanced partitions
in Sections 4.2 and 4.4.
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Note that covering arrays are an instance of our covering families. A test is a row of an arrayÐa
vector of size n with components taking values in the set {0, . . . ,v − 1}Ðand a coverage goal is a set
of k positions 1 ≤ i1 < i2 < . . . < ik ≤ n and a vector v ∈ {0, . . . ,v − 1}k . A test t ∈ {0, . . . ,v − 1}n
covers this goal if the k components at positions (i1,i2, . . . ,ik ) of t make up the vector v . A family
F of vectors of size n is a covering family if it covers every coverage goal, thus it is nothing but a
covering array. The probability that a random vector t ∈ {0, . . . ,v − 1}n covers a coverage goal is

v−k . There are
(
n
k

)

vk coverage goals in all. Using Theorem 3.1, we obtain that there is a covering

family of size O (kvk logn), which is asymptotically the same as the bound by Godbole et al. This,
of course, is not surprising, given that both bounds are obtained by the probabilistic method.
As a concrete example of combinatorial testing using covering arrays, consider the testing of

combinational VLSI circuits [Seroussi and Bshouty 1988]. We are given a circuit withn inputs, which
consists of a large number of smaller components, and each component depends on at most k of
the n inputs. In VLSI testing applications, n may be much larger than k . A test consists of a Boolean
vector of n bits. Informally, our coverage goal is to test every component with every possible input
of k bits. Thus, our testing task precisely corresponds to finding small k-covering arrays for v = 2.
From the discussion above, we obtain that there is a covering array of size O (k2k logn). Moreover,
by Theorem 3.1, every array of 2k (k logn − log ϵ ) randomly generated rows is a covering array
with probability at least 1 − ϵ . This was in fact the main result of Seroussi and Bshouty [1988].
Note that the naive bound is O (nk2k ). In fact, Seroussi and Bshouty [1988] show a lower bound of
Ω(2k logn), so the probabilistic method is almost optimal in this case.

6 OTHER RELATED WORK

6.1 RandomWalks over Graphs

We focus on łstaticž notions of coverage, where showing lower bounds on probabilities are relatively
easier. In random simulation of reactive systems, such as network protocols, the testing process
defines a random walk over the state space of the system. If the random walk rapidly mixes, that is,
converges to a stationary distribution in a small number of steps, random simulation fairly simulates
the reachable state space in a stationary distribution. Rigorous analysis of random walks using
Markov chain mixing techniques was pioneered by West [1989] for a simple class of decoupled
network protocols (technically, the state space was a hypercube). Mihail and Papadimitriou [1994]
used coupling techniques to prove rapid mixing for the class of symmetric dyadic flip-flops (SDFF):
a concurrent system of automata, each with two states, communicating pairwise by rendezvous
and where each action has a reverse action. Unfortunately, it is very hard to prove rapid mixing for
most Markov chains, indeed, there are counterexamples to rapid mixing when the rather severe
restrictions of SSDF are relaxed; for example, reversibility is a strong requirement [Levin et al.
2009].
It is tempting to provide a random testing version of systematic testing procedures such as

context-bounded reachability. For example, could one show that a random walk on the state
space defined by a multithreaded program quickly visits any k-context-bounded reachable state?
Unfortunately, this involves bounding the hitting time for a random walk on a directed graph, i.e.,
the expected time for a random walk to visit a node, and we do not have a sufficiently strong lower
bound on the hitting time that gives better than exponential bounds.

Thus, we believe extensions of our techniques to łdynamicž coverage may require sophisticated
methods.
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6.2 Deterministic Families of Tests

Probabilistic constructions demonstrate existence of covering families, and we can amplify the
probability of finding a test suite. However, the soundness guarantee is łwith high probability.ž
Unfortunately, even when a small covering family can be shown to exist, an explicit, determinis-

tic construction of a covering family can be a significantly harder problem. This is a recurring
theme in combinatorics [Alon 2010]: for many problems, explicit deterministic constructions come
much later than an existence argument using the probabilistic method. In fact, there are many
combinatorial objects proved to exist using the probabilistic method for which we do not know
optimal deterministic constructions [Alon and Spencer 2004]! For example, our notion of splitting
families is related to perfect hash functions [Czech et al. 1997; Fredman et al. 1984; Yao 1981]. In this
context, Yao [1981] gives a highly non-trivial deterministic construction of k-splitting families of

size 4k
2
(log2 n)

k−1, which is worse than the bound kk+1 (k!)−1 logn obtained through Corollary 4.4.
Furthermore, decision problems related to minimal constructions or enumerations are usually
computationally intractable (NP-hard [Seroussi and Bshouty 1988; Yannakakis 1982]); thus, it is
unlikely that a simple deterministic approach can supplant the simplicity of random testing.
Even when deterministic construction of a covering family is known, it may be infeasible to

execute all tests from the family. Consider Yao’s construction of k-splitting families. Already for
n = 5 and k = 2Ðthe values used in Jepsen testsÐthe size of the family is approximately 595.
Increase n to 10 and k to 3, and the size grows to 9,609,717. Compared to this, randomly constructed
families have two additional benefits: they do not require a sophisticated test generation algorithm
and we can always stop the construction and apply Theorem 3.1 or its instances in reverse to obtain
the probability that the constructed family is covering. The probability can serve as a qualitative
measure of coverage.

6.3 Systematic Approaches

One direction of research in assuring correct behavior of distributed systems is to build fully verified
systems łfrom scratch.ž Despite heroic efforts in this direction [Hawblitzel et al. 2015; Lamport
1994; Wilcox et al. 2015], we are quite far from replacing existing infrastructure with fully verified
deployments of comparable functionality and performance.

Systematic approaches like model checking [Baier and Katoen 2008; Fisman et al. 2008; Konnov
et al. 2017; Leesatapornwongsa et al. 2014; Yang et al. 2009] and systematic fault-injection [Alvaro
et al. 2015; Gunawi et al. 2011] design algorithms and heuristics that perform systematic search over
behaviors which are sufficient to find all bugs. Theoretically, these approaches have an additional
benefit of providing guarantees about the absence of bugs of a certain kind.

7 CONCLUSIONS

Random simulation is the primary mode of testing systems with large and complex state spaces
across many different domains: from sequential circuits to network protocol implementations and
to large-scale distributed systems. Practitioners tend to use random schedulers and random fault-
injection [Apache Hadoop 2016; Claessen et al. 2009; Izrailevsky and Tseitlin 2011; Kingsbury 2017]
to test their systems, sometimes even advocating doing this in production. The latter approach,
dubbed Chaos Engineering and codified in the Principles of Chaos Engineering [2017], is the
underlying philosophy of Netflix Simian Army [Izrailevsky and Tseitlin 2011], a collection of tools
called monkeys that randomly tamper with the system in production, with engineers monitoring
the effects and addressing problems as they arise.

Our results are a step towards a theoretical understanding of random testing: we show that the
effectiveness of testing can be explained in certain scenarios by providing lower bounds on the
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probability that a single random test covers a fixed coverage goal. For network partition tests, we
introduce a set of coverage goals inspired by actual bugs in distributed systems and show lower
bounds on the probability of a random test covering a goal.
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