
StriSynth: Synthesis for Live Programming
Sumit Gulwani∗, Mikaël Mayer†, Filip Niksic‡, and Ruzica Piskac§
∗Microsoft Research Redmond, USA, Email: sumitg@microsoft.com

†EPFL, Switzerland, Email: mikael.mayer@epfl.ch
‡MPI-SWS, Germany, Email: fniksic@mpi-sws.org
§Yale University, USA, Email: ruzica.piskac@yale.edu

Abstract—Motivated by applications in automating repetitive
file manipulations, we present a tool called StriSynth, which
allows end-users to perform transformations over data using
examples. Based on provided examples, our tool automatically
generates scripts for non-trivial file manipulations.

Although the current focus of StriSynth are file manipulations,
it implements a more general string transformation framework.
This framework builds on and further extends the functionality
of Flash Fill—a Microsoft Excel extension for string transforma-
tions.

An accompanying video to this paper is available at the
following website http://youtu.be/kkDZphqIdFM.

I. INTRODUCTION

This paper describes an early prototype of a tool called
StriSynth that synthesizes scripts based on input examples.
Writing shell scripts and regular expressions can be a tedious
task even for experienced computer users. Faulty scripts that
lead to data loss and corrupted files are not uncommon. When
a non-expert user seeks help in writing a script, she usually
describes her intentions through examples: she illustrates what
a script should do on the representative inputs that best convey
her intentions. We mimic this scenario in StriSynth: the user
demonstrates how chosen input strings should be manipulated,
and we automatically synthesize a command that captures the
user’s intentions. If the user is unhappy with the suggested
command, she can provide more examples to help StriSynth
derive a better script.

While helping with writing scripts is an important problem
to address, the majority of computer users cannot write scripts,
but yet need them every day. For example, a user might
want to organize their photos in a specific way. Every user
has a different style for naming files, so it is infeasible to
find a general script that works for everyone. Our additional
motivation was to develop a tool that helps users automate
file manipulations. StriSynth monitors the previous commands
that have been executed by the user and then suggests, in an
interactive manner, a script that will manipulate the remaining
files that still need to be processed. The preliminary versions
of our tool can be seen at [1], [2], [3].

We envision two groups of users benefiting from StriSynth:
• To the large community of end users, our tool represents

an easy way to do complex file manipulations without
actually writing scripts. To ensure that the tool always
performs the operations that the user has in mind, the user
also receives a description of the planned transformations
in English.

• Programmers and experienced users can use StriSynth
as a synthesis tool to help derive complex shell scripts
from simple examples. Deriving scripts automatically
increases programmer productivity and makes code less
error-prone.

StriSynth builds upon the Programming by Example (PBE)
paradigm [4], [5], [6]. PBE is a promising research direction
that can enable rich, easy data manipulation even for non-
programmers [7]. The success and impact of this line of work
is witnessed by the fact that some of this technology [8]
ships as part of the popular Flash Fill feature in Microsoft
Excel 2013. Recent work in PBE has mostly focused on
manipulating atomic data types such as strings [8], [9], [10]
and numbers [11]. In contrast, StriSynth allows manipulating
hierarchical data types such as nested lists of strings and
numbers.

StriSynth can be seen as a live programming environment,
with the key benefit being that it allows end-users to investigate
the synthesis result without having to look at source code.
Even more significantly, it allows the user to identify new
examples that will accelerate convergence to the intended
result/program.

The basis of StriSynth is an algorithm for automated syn-
thesis of string transformation. The operations that StriSynth
supports (cf. Sec. III) are, in summary, string manipulations.
Although we list simple file manipulations as our main moti-
vation, our tool can handle more general transformations. Our
goal is to extend the functionality of StriSynth far beyond these
initial intentions. For instance, we plan to generalize StriSynth
to handle complicated manipulations of tabular data.

II. MOTIVATING EXAMPLES

We illustrate the functionality of StriSynth on three different
scenarios. The scenarios were chosen to show the range of
capabilities of StriSynth.

A. Complex File Renaming

A typical user has a large number of files that she plans to
organize “one day”, but never does so as the work is tedious
and repetitive. A common instance of such a task is organizing
photographs based on the date when they were taken. StriSynth
can help automate such tasks, as it supports complex file
renamings involving both syntactic and semantic transforma-
tions. In particular, StriSynth supports digit-to-month (English)
and month-to-digit transformations. To organize image files,



the user only needs to provide a single example indicating her
intentions; she renames a file, and asks StriSynth to rename the
rest of the files accordingly. To do this, she gives the following
command as an input:

mv 20141121-001.jpg 2014Nov21/001.jpg

Based on the given example, StriSynth detects a date in the
file name, and converts it from the digit format into the
YYYY-MM-DD format. StriSynth next generates a sequence
of commands that correspond to renaming every image file in
the directory according to the above pattern.

Even if there were different date formats in the file names,
StriSynth would have detected them and followed the conven-
tion indicated by the user. While writing a script or renaming
all the files manually can be a very tedious task, complex
file manipulations using StriSynth usually require only 1-2
representative examples (see Table I).

B. Merging Parts of Books Together

Consider the following listing of a directory and the task of
merging multiple chapters of each book into a corresponding
file:

algorithms1.pdf
[. . .]
algorithms3.pdf
graphics1.pdf
[. . .]
graphics17.pdf
math1.pdf
[. . .]
math5.pdf

Since the files have different naming patterns, writing a script
to do this task could be difficult for non-expert users. Using
StriSynth, the user can semi-automate the process of creating
the needed routine:

convert algorithms1.pdf [. . .] algorithms3.pdf
algorithms-book.pdf;

convert graphics1.pdf [. . .] graphics17.pdf
graphics-book.pdf;

convert math1.pdf [. . .] math5.pdf
math-book.pdf;

The first step for the user is to group the files with similar
names, and merge each group into a single file. To address
the need for grouping strings, one of the main features of
StriSynth is the partition operation. The user provides a small
number of example strings that should be grouped together,
and based on these examples, StriSynth partitions the rest.

In our scenario, a good way for the user to indicate her
intention is to declare the following two groups:

Group 1 Group 2
algorithms1.pdf graphics1.pdf
algorithms2.pdf graphics2.pdf

Based on these examples, StriSynth recognizes how the file
names should be partitioned, and displays the following mes-
sage:

Groups files by file name until the beginning of
the first number. The name of the category is the
constant string ’Group ’ + a 1-digit counter starting
at 1.

As this message correctly reflects the user’s intentions, she
does not need to provide any further examples, and StriSynth
partitions the files accordingly.

Note that even though there are three groups, it was
sufficient for the user to provide examples for only two
groups. This feature is particularly useful when there are many
groups—indicating good representatives for even two groups
can help StriSynth categorize a large number of files.

Once the partitioning is finished, the user sees three groups
of file names (three different directories). Let us, for a moment,
consider Group 1. The user can write the following command
to combine the files into a single file:

convert algorithms1.pdf algorithms2.pdf ...
algorithms-book.pdf

So far we have used the ellipsis (. . . ) as a meta-symbol,
to denote that some parts of a string are missing. However,
in the previous command, the user literally enters the ellipsis,
and StriSynth automatically expands the command to:

convert algorithms1.pdf algorithms2.pdf
algorithms3.pdf algorithms-book.pdf

After validating the command, the user asks StriSynth to
synthesize the corresponding complete commands for all other
partitions. In particular, the following command is generated
for the third directory:

convert math1.pdf math2.pdf math3.pdf
math4.pdf math5.pdf math-book.pdf

At this point, the user could simply copy/paste each of the
three commands to the console and execute them. However,
we can go one step further and synthesize a single script
that will execute all three commands. For this purpose, the
user invokes the reduce operation in StriSynth. To indicate an
example reduction, the user copies and pastes the first and the
second command separated by a semicolon:

convert algorithms1.pdf [...]
algorithms-book.pdf;

convert graphics1.pdf [...]
graphics-book.pdf; ...

In this command, the first two occurrences of the ellipsis are
meta-symbols, but the last one is literal. Based on the provided
specification in the form of a partial command, StriSynth is
able to correctly complete the command.

C. Renaming and Printing Documents

In this subsection, we demonstrate two additional operations
provided by StriSynth: filter and split. The filter operation can
be seen as a variant of the partition operation—it partitions a
list of strings based on a predicate, and it keeps those parts
for which the predicate is true. The split operation splits a
string into a list of strings based on a few examples of the



initial elements of the list. At the end of the subsection we
also demonstrate that the tool can learn counters by example.

To illustrate the split and filter operations, consider the
following scenario: the user has a list of files and wants to
send all the DOC files to a printer. The files are listed in a
comma-separated string:

img1.jpg, img2.jpg, reportA.doc,
reportA.pdf, reportB.doc, reportB.pdf,
reportC.doc, reportC.pdf, report4.doc,
report4.pdf, summary.doc, conference.mp3

The user first needs to split the string to get a list of file
names. She gives examples of the first two elements of the
list: img1.jpg and img2.jpg. Based on these examples,
StriSynth detects the delimiter and performs the split.

Next, the user wants to process only the DOC files. She
gives reportA.doc and reportB.doc as positive exam-
ples:

reportA.doc -> OK
reportB.doc -> OK

It turns out this is not enough. Based on these two exam-
ples, StriSynth concludes that the filtering needs to be done
based on the substring report, which incorrectly classifies
reportA.pdf as a positive example. Therefore, the user
provides reportA.pdf as a negative example:

reportA.doc -> OK
reportB.doc -> OK
reportA.pdf -> notOK

Now StriSynth correctly performs the filtering, and outputs the
following list:

reportA.doc
reportB.doc
reportC.doc
summary.doc

Finally, to illustrate the use of counters, let us assume that
the user wants to print those DOC files, but she also wants to
rename the files to add a counter that indicates the order in
which the files were printed. She inputs an example command
for reportA.doc:

lpr reportA.doc;
mv reportA.doc printed01_reportA.doc

For reportB.doc, StriSynth generates the following com-
mand:

lpr reportB.doc;
mv reportB.doc printed01_reportB.doc

This is almost correct, but the new name should contain “02”
instead of “01”. The user corrects this issue manually and
runs StriSynth again. It now detects the increasing counter
and synthesizes the correct list of commands. After the final
reduction, the synthesized command is:

lpr reportA.doc;
mv reportA.doc printed01_reportA.doc;

lpr reportB.doc;

mv reportB.doc printed02_reportB.doc;
lpr reportC.doc;

mv reportC.doc printed03_reportC.doc;
lpr summary.doc;

mv summary.doc printed04_summary.doc;

III. STRISYNTH: A SYSTEM OVERVIEW

Flash Fill

ExtensionsInput example 1

Input example n

. . .
Output

Fig. 1. System architecture of StriSynth: it uses Flash Fill as a black box
and implements additional functionality on top.

An overview of StriSynth is given in Figure 1. StriSynth
implements the operations discussed in the previous section.
These operations leverage the Flash Fill [8] algorithm as a
black box, which has the added advantage of being able to
plug in any string transformation learner in place of Flash
Fill.

In order to understand how that works, we can think of
Flash Fill’s learning algorithm as a function which takes a list
of examples of how n-tuples of strings should be transformed
into strings, and produces a transformer from n-tuples into
strings that works correctly on the provided examples. Flash
Fill then applies the obtained transformer on a list of n-tuples,
thus essentially performing our map operation. Indeed, if we
were supporting only simple file renamings, we could easily
use Flash Fill alone for that purpose.

We now describe the other operations in StriSynth that
extend the functionality of Flash Fill.

Partition divides a list of strings into groups based on the
string the transformer produces. The transformer is in this case
a classifier. The learning algorithm extracts common substrings
for each group, and pairs up the example strings with their
corresponding substrings. The result of StriSynth is a common
transformer.

Filter is a special case of Partition where the output of
the classifier is tested against an expected string. To learn
the expected string, StriSynth looks for a common substring
among the positive examples. If all negative examples are
mapped to another string, the resulting transformer is returned.

Reduce: The transformer with unbounded number of inputs
becomes a flattener. A natural way for the user to specify
the outcome of the reduce operator is by providing a prefix
of the output. To force the reduce behavior while learning
the transformer, the user enters the meta-character ’. . . ’ at the
desired point in the output. It is up to StriSynth to find the
delimiter as well as necessary transformations.

Split does the opposite of Reduce—it splits a string into a
list of strings. To learn the transformer, the user provides an
input string, and the corresponding substrings. The transformer
returns a list of strings.



A. Implementation
Our initial prototype of StriSynth was calling an online

Windows-hosted version of the proprietary Flash Fill. To deal
with unbounded number of inputs, counters, number transfor-
mations and the operations described above,, we implemented
our own version of the Flash Fill algorithms [6].

We wrote StriSynth in Scala, a language running on the
Java Virtual Machine. Hence, StriSynth runs on both Unix
and Windows. We packed StriSynth into a runnable JAR with
commands in arguments to manipulate files. We also deployed
this JAR to sonatype.org for reuse as a library.

We also added a server in the JAR to be able to run it as a
service listening on a given port. Using this service, we wrote
a Powershell script to listen to file renamings, and to offer a
suggestion in English about the generalized operation that the
user is about to perform.

IV. PRELIMINARY EVALUATION

For the preliminary evaluation of StriSynth, we were in-
terested in how many examples the user needs to provide to
accomplish a complex file manipulation. To find interesting
file manipulations, we searched various web sources for users
asking for help in generating a complex command or a script.
We collected 60 scenarios: 12 come from stackoverflow.com,
18 are from unix.com, and 30 come from various other
websites. Based on some specificities, e.g. the operations that
need to be performed, we manually categorized the scenarios
into several classes. Some scenarios fall into two or more
different classes. The results of this preliminary evaluation are
summarized in Table I. We ran our benchmarks on a JVM with
1Gb of RAM on an Intel Core 2.60 GHz running Windows 7.
Most of the scenarios were solved in less than 1s. We bounded
the learning to 23s per added example.

TABLE I
PRELIMINARY EVALUATION SUMMARY.

Class N # Sample transformation
Filter 43 3 report.doc→Ok, report.pdf→NotOk
Include 16 1 bar.txt → lpr bar.txt &
Ending 8 1 file.JPEG → file.jpg

Extraction 12 1 a.txt → a.txt
3 2 Gof483 HD.avi→EP483.avi

Counter 8 2 AB123.gif→AB-0111-1.gif
B3245.gif →B-0111-2.gif

Number 3 1 fl1.dat→fl1 21001.dat
2 2 Img401.jpg→Img001.jpg

Properties 10 1 abc.log→abc.2011120706:54.log

Reduce 9 1 doc1.pdf doc2.pdf... doc.pdf
1 2 s1 1.mp3 s1 2.mp3... song1.mp3

Split 3 2 ”fa,fb,fc” 2 → fb
Date 2 1 110214-01.jpg→11Feb14\01.jpg
Partition 7 4 Godfather CD1.avi → Godfather

The first column in the table shows the name of the
scenario class. The number in the bold font in the second

column denotes the number of scenarios belonging to this
class. The third column denotes the number of input/output
examples that we needed to derive the correct transformation.
The last column illustrates a sample transformation in the
corresponding scenario class.

We can see that in the majority of cases we needed only
one or two examples.

A. Further Evaluation Plans

As StriSynth reaches a satisfying level of maturity, our goal
is to empirically evaluate it in more detail. We plan to conduct
experiments on two types of users: programmers and end
users. The experiments for those two groups will be similar,
but the set of benchmarks used will be different. For expert
users we will collect representative tasks on technical forums
and mailing lists, while the benchmark for non-expert users
will correspond to their everyday tasks. The experiment will
ask test subjects to first accomplish a given problem without
our tool support. After completing the task, they will be asked
try to solve it using StriSynth.

In addition to measuring the usability of our tool, we will
also collect user feedback on how the features provided by
StriSynth can be further improved.

V. CONCLUSION

In this paper we described StriSynth. The goal of our tool is
to empower end users and help them to easily perform tasks
that they could not have done otherwise. At the same time,
StriSynth helps programmers execute complex tasks more
efficiently, thus making them more productive and their code
less error-prone. We believe that StriSynth’s type of interactive
synthesis could be a highly-desired feature that could improve
tomorrow’s use of computers.

REFERENCES

[1] M. Mayer, “Video,” http://youtu.be/F9mUIPK7h-I.
[2] ——, “Video,” http://youtu.be/yaNr-JDc8tA.
[3] ——, “Video,” http://youtu.be/SRFC-Hi08-I.
[4] A. Cypher and D. Halbert, Watch what I Do: Programming by Demon-

stration. MIT Press, 1993.
[5] H. Lieberman, Your Wish Is My Command: Programming by Example.

Morgan Kaufmann, 2001.
[6] S. Gulwani, “Synthesis from examples: Interaction models and al-

gorithms,” 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 2012, Invited talk paper.

[7] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Commun. ACM, vol. 55, no. 8, pp. 97–105, 2012.

[8] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in POPL, 2011, pp. 317–330.

[9] R. Singh and S. Gulwani, “Learning semantic string transformations
from examples,” PVLDB, vol. 5, 2012.

[10] A. K. Menon, O. Tamuz, S. Gulwani, B. W. Lampson, and A. Kalai, “A
machine learning framework for programming by example,” in ICML
(1), 2013, pp. 187–195.

[11] R. Singh and S. Gulwani, “Synthesizing number transformations from
input-output examples,” in CAV, 2012, pp. 634–651.


