
Combinatorial Constructions

for E�ective Testing

Thesis approved by

the Department of Computer Science

Technische Universität Kaiserslautern

for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

to

Filip Nikšić

Date of Defense: May 3, 2019

Dean: Stefan Deßloch

Reviewer: Rupak Majumdar

Reviewer: Madan Musuvathi

Reviewer: Stefan Kiefer

D 386

ii

Summary
Large-scale distributed systems consist of a number of components, take a number of parameter

values as input, and behave di�erently based on a number of non-deterministic events. All

these features—components, parameter values, and events—interact in complicated ways, and

unanticipated interactions may lead to bugs. Empirically, many bugs in these systems are caused

by interactions of only a small number of features. In certain cases, it may be possible to test all

interactions of k features for a small constant k by executing a family of tests that is exponentially

or even doubly-exponentially smaller than the family of all tests. Thus, in such cases we can

e�ectively uncover all bugs that require up to k-wise interactions of features.

In this thesis we study two occurrences of this phenomenon. First, many bugs in distributed

systems are caused by network partition faults. In most cases these bugs occur due to two or three

key nodes, such as leaders or replicas, not being able to communicate, or because the leading node

�nds itself in a block of the partition without quorum. Second, bugs may occur due to unexpected

schedules (interleavings) of concurrent events—concurrent exchange of messages and concurrent

access to shared resources. Again, many bugs depend only on the relative ordering of a small

number of events. We call the smallest number of events whose ordering causes a bug the depth of

the bug. We show that in both testing scenarios we can e�ectively uncover bugs involving small

number of nodes or bugs of small depth by executing small families of tests.

We phrase both testing scenarios in terms of an abstract framework of tests, testing goals,

and goal coverage. Sets of tests that cover all testing goals are called covering families. We give a

general construction that shows that whenever a random test covers a �xed goal with su�ciently

high probability, a small randomly chosen set of tests is a covering family with high probability.

We then introduce concrete coverage notions relating to network partition faults and bugs of small

depth. In case of network partition faults, we show that for the introduced coverage notions we

can �nd a lower bound on the probability that a random test covers a given goal. Our general

construction then yields a randomized testing procedure that achieves full coverage—and hence,

�nd bugs—quickly.

In case of coverage notions related to bugs of small depth, if the events in the program form a

non-trivial partial order, our general construction may give a suboptimal bound. Thus, we study

other ways of constructing covering families. We show that if the events in a concurrent program

are partially ordered as a tree, we can explicitly construct a covering family of small size: for

balanced trees, our construction is polylogarithmic in the number of events. For the case when the

partial order of events does not have a “nice” structure, and the events and their relation to previous

events are revealed while the program is running, we give an online construction of covering

families. Based on the construction, we develop a randomized scheduler called PCTCP that

uniformly samples schedules from a covering family and has a rigorous guarantee of �nding bugs

of small depth. We experiment with an implementation of PCTCP on two real-world distributed

systems—Zookeeper and Cassandra—and show that it can e�ectively �nd bugs.

iii

iv

Zusammenfassung
Große verteilte Systeme bestehen aus vielen Komponenten, hängen von vielen Parametern ab

und leiten ihr Verhalten von vielen nicht-deterministischer Ereignissen ab. Alle diese Features—

Komponenten, Parameter und Ereignisse—interagieren auf komplizierte Weise, und unerwartete

Interaktionen können zu Fehlern führen. Erfahrungsgemäß werden viele Fehler in diesen Systemen

durch eine Interaktion einer kleinen Anzahl von Features verursacht. In bestimmten Fällen ist es

möglich, alle Interaktionen von k Features für eine kleine Konstante k zu testen, indem man eine

Familie von Tests ausführt, die exponentiell oder gar doppelt-exponentiell kleiner als die Familie

aller Tests ist. Man kann in diesen Fällen also alle Fehler, die durch die Interaktion von bis zu k
Features auftreten, e�zient aufdecken.

In dieser Dissertation untersuchen wir zwei Varianten dieses Phänomens. Zum einen werden

viele Fehler in verteilten Systemen durch network partition faults1
verursacht. In den meisten Fällen

treten diese Fehler auf, wenn zwei oder drei wesentliche Knoten, beispielsweise Leader oder Replica,

nicht kommunizieren können, oder wenn der Leader-Knoten sich in einem Block der Partition

wieder�ndet, der nicht mit einem Quorum der Knoten kommunizieren kann. Zum anderen können

Fehler auftreten, wenn unerwartete schedules (interleavings) nebenläu�ger Ereignisse auftreten—

nebenläu�ger Nachrichten-Austausch oder nebenläu�ger Zugri� auf geteilte Ressourcen. Auch

hier hängen viele Fehler von der relativen Ordnung einiger weniger Ereignisse ab. Wir nennen

die kleinste Anzahl von Ereignissen, deren (Um)ordnung einen Fehler verursacht, die Tiefe des

Fehlers. Wir zeigen, dass wir in beiden Test-Szenarien e�ektiv Fehler, die eine kleine Zahl von

Knoten betre�en oder geringe Tiefe haben, aufdecken können, indem wir eine kleine Familie von

Tests ausführen.

Wir beschreiben beide Szenarien mit Hilfe eines abstrakten Test-Frameworks bestehend aus

Tests, Testzielen und Ziel-Überdeckung. Eine Menge von Tests, die alle Testziele überdeckt, nennen

wir covering family (überdeckende Familie). Wir zeigen eine allgemeine Konstruktion, die beweist,

dass es genügt, dass ein zufälliger Test ein festes Ziel mit hinreichend hoher Wahrscheinlichkeit

überdeckt, dass mit hoher Wahrscheinlichkeit eine kleine, zufällig gewählten Menge von Tests eine

covering family ist. Wir führen dann konkrete Überdeckungskriterien für network partition faults

und Fehler kleiner Tiefe ein. Im Falle der network partition faults geben wir eine untere Schranke

für die Wahrscheinlichkeit, dass ein zufälliger Test ein bestimmtes Ziel überdeckt, an. Unsere

allgemeine Konstruktion ergibt dann ein randomisiertes Testverfahren, dass volle Überdeckung—

und somit Fehler�ndung—schnell erreicht.

Im Falle der Überdeckung von Fehler kleiner Tiefe, wenn die Ereignisse des Programms eine

nicht-triviale Halbordnung bilden, ergibt unsere Konstruktion eine suboptimale Schranke. Aus

diesem Grund betrachten wir andere Wege, um covering families zu konstruieren. Wir zeigen,

wenn die Ereignisse eines nebenläu�gen Programms in baumartigen geordnet werden können,

können wir explizit eine kleine covering family konstruieren: für balancierte Bäume ist unsere

Konstruktion polylogarithmisch in der Ereignis-Zahl. Wenn die partielle Ordnung der Ereignisse

keine “schöne” Struktur hat, und die Ereignisse sowie ihre Ordnung erst während der Ausführung

bekannt werden, geben wir ein online-Konstruktion von covering families an. Aufbauend auf dieser

Konstruktion entwickeln wir einen randomisierten Scheduler namens PCTCP, der gleichverteilte

Stichproben von Schedules aus einer covering family wählt und eine starke Garantie, Fehler kleiner

Tiefe zu �nden, bietet. Wir experimentieren mit einer Implementierung von PCTCP auf zwei

verbreiteten verteilten Systemen—Zookeeper und Cassandra—und zeigen, dass wir e�ektiv Fehler

�nden können.

1
Netzwerkausfälle, bei denen ein Teil des Systems nicht mehr mit dem Rest kommunizieren kann

v

vi

Acknowledgments
I would like to thank my advisor Rupak Majumdar for guidance and support during my

PhD, for all the wise advice and the mathematical puzzles we would occasionally obsess

over for days.

I would also like to thank Ruzica Piskac, my initial advisor before she left to Yale. Were

it not for her, I would not have come to MPI-SWS in the �rst place.

I am forever grateful to Burcu Kulahcioglu Ozkan and Murat Ozkan, Ivan Gavran and

Mia Majtan, Simin Oraee, Marko Doko, Kaushik Mallik, Soham and Nivedita Chakraborty,

and Manuel Gomez Rodriguez for helping me through di�cult times.

I wish to thank Beta Ziliani, Susanne van den Elsen, Natacha Crooks, and Johannes

Kloos for being great o�ce mates, and many individuals, too numerous to list, who made

MPI-SWS such a great place. Thanks for all the scienti�c discussions, all the board games,

quizzes, puzzles, movie nights, and all the fun we had together.

Finally, I am grateful to my family for providing constant support during my PhD.

vii

viii

Contents

1 Introduction 1
1.1 Abstract Testing . 3

1.2 Testing with Random Partitions . 4

1.3 Testing with Hitting Families . 6

1.4 Contributions . 8

2 Motivating Examples 11
2.1 Etcd . 12

2.2 Kafka . 13

2.3 Chronos . 14

2.4 CTStore . 16

2.5 Summary and Coverage Notions . 18

3 Abstract Testing 21
3.1 Covering Families . 21

3.2 Independent Goals . 24

4 Testing with Random Partitions 27
4.1 Combinatorial Preliminaries . 27

4.2 Splitting Families . 28

4.3 Separating Families . 32

4.4 Minority Isolating Families . 33

5 Testing with Hitting Families 39
5.1 Hitting Families of Schedules . 39

5.1.1 Preliminaries: Partial Orders . 39

5.1.2 Schedules and Their Families . 40

5.1.3 Admissible Tuples and Hitting Families 41

5.2 Speci�c Partial Orders . 43

ix

x CONTENTS

5.2.1 Chains and Antichains . 43

5.2.2 Series-Parallel Orders . 46

5.2.3 Binary Semilattices . 48

5.2.4 Trees . 50

5.3 3-Hitting Families for Series-Parallel Orders 51

5.4 d-Hitting Families for Trees for d ≥ 3 . 54

5.5 From Hitting Families to Systematic Testing 61

6 Online Construction of Hitting Families 67
6.1 Overview of the Approach . 68

6.2 Online Strong Hitting Schedulers . 73

6.2.1 Scheduling Games . 73

6.2.2 Online Hitting for Upgrowing Posets 74

6.2.3 Online Hitting for Scheduling Posets 78

6.2.4 Online Chain Partitioning . 83

6.2.5 PCTCP—PCT with Chain Partitioning 85

6.3 Experimental Evaluation . 86

6.3.1 P# Benchmarks . 86

6.3.2 Case Study: Cassandra . 90

6.3.3 Case Study: Zookeeper . 92

7 Related Work 97
7.1 Combinatorial Testing . 97

7.2 Randomized Approaches . 98

7.2.1 Deterministic Families of Tests 99

7.2.2 Random Walks over Graphs . 100

7.3 Systematic Approaches . 100

7.4 Theory of Partial Orders . 101

7.5 Practical Tools . 102

A Curriculum Vitae 113

Chapter 1

Introduction

Large-scale distributed systems are di�cult to build and test. On the one hand, these

systems feature nondeterminism in the interleaving of concurrent events—concurrent

exchange of messages and concurrent access to shared resources. The number of possible

interleavings of events is generally exponential in the number of events and thus di�cult

to reason about, and an unexpected interleaving may easily cause the system to fail. On

the other hand, these systems must also account for partial failures, where components

or communication can fail along the way and produce incomplete results. Fault-tolerant

components are di�cult to design and reason about, and usually require intricate protocols

to ensure correct behavior for the global system. Even if individual components are

correct, their composition may require further protocols to operate correctly under failure

conditions. Thus, distributed systems are some of the most complex pieces of software.

Given the critical role these systems play today, gaining high assurance of their behavior

under failure conditions is a critical challenge (Lopes 2016; McCa�rey 2015).

The approaches to assuring correct behavior of distributed systems usually go in one of

the two extreme directions. One direction is characterized by strong guarantees of �nding

bugs or showing their absence: one can try to build a fully veri�ed system “from scratch”

(Hawblitzel et al. 2015; Lamport 1994; Wilcox et al. 2015), or systematically explore the

space of behaviors of the system (Baier and Katoen 2008; Fisman, Kupferman, and Lustig

2008; Konnov, Veith, and Widder 2017; Leesatapornwongsa et al. 2014a; Yang et al. 2009)

under systematically injected faults (Alvaro, Rosen, and Hellerstein 2015; Gunawi et al.

2011). The former approach ensures the absence of bugs by construction, while the latter

approach guarantees all bugs to be found by exhausting the search space. Unfortunately,

the strong guarantees come with high price: for the fully veri�ed systems it is di�cult

to match the functionality and performance of existing deployments, and the systematic

exploration, despite techniques like partial order reduction (Godefroid 1996; Flanagan and

1

2 CHAPTER 1. INTRODUCTION

Godefroid 2005; Abdulla et al. 2014), still faces exponentially many behaviors to explore;

hence it scales poorly to real-world deployments.

The other direction is stress testing with random schedulers and randomly inserted

faults (Apache Hadoop 2016; Claessen et al. 2009; Izrailevsky and Tseitlin 2011; Kingsbury

2013–2018). This approach is usually straightforward to implement and it scales well,

even to large geo-replicated systems in production (Izrailevsky and Tseitlin 2011; Chaos

Engineering 2018). However, the guarantees of �nding bugs using this approach are

usually weak or non-existent.

Interestingly, despite the weak guarantees, the random testing approaches work

remarkably well. For example, Jepsen (Kingsbury 2013–2018) is a framework for black-box

testing of distributed systems under partition faults—faults that prevent portions of a

system to communicate with other portions. Jepsen provides an infrastructure to set up a

number of processes and exercise a system with random operations as well as randomly

introduced partition faults. Using Jepsen, Kingsbury (2013) found a remarkably large

number of rather subtle problems in many production distributed systems.

The success of random testing in Jepsen and similar tools presents a conundrum. On the

one hand, academic wisdom asserts that random testing will be completely ine�ective in

�nding bugs in faulty systems other than by “extremely unlikely accident”: the probability

that a random execution stumbles across the “right” combination of circumstances—

failures, recoveries, reads, and writes—is intuitively so small that any soundness guarantee

for a given coverage goal, even probabilistic, would be minuscule (many systematic testing

papers start by asserting that random testing does not or should not work). On the other

hand, in practice, random testing �nds bugs within a small number of tests.

As one of the contributions of this thesis, we provide a theoretical understanding for

the empirical success of Jepsen in exposing subtle bugs. As evidenced by a series of online

articles by Kyle Kingsbury about testing distributed systems (Kingsbury 2013–2018), most

of the bugs occur due to two or three key nodes, such as leaders or replicas, not being

able to communicate, or because the leading node �nds itself in a block of the partition

without quorum. We show that a bug of this sort involving a small, �xed number of

nodes k , can be detected by simulating a random network partition, and the detection

probability is not astronomically small, as might be expected, but it is bounded from below

by a su�ciently “high” constant that depends only on k . Using this bound we show that

the bug can be detected with overwhelming probability by randomly generating a set of

network partitions whose size is logarithmic in the size of the system. In fact, this is what

Jepsen implicitly does, and hence it �nds the bug quickly. Thus, we have an a posteriori

justi�cation of Jepsen’s e�ectiveness.

The empirical observation that many bugs found by Jepsen involve a small number of

nodes can be seen as an instance of the “small-world” phenomenon originally observed in

1.1. ABSTRACT TESTING 3

the context of social networks (Milgram 1967). The phenomenon also manifests itself in

bugs arising from unexpected interleavings of concurrent events. Each interleaving is

called a schedule. Empirically, many bugs in concurrent systems are exposed by considering

the sequencing of a small number of events—the “bug depth”—independent of the ordering

of the rest of the events (Burckhardt et al. 2010; Lu et al. 2008; Qadeer and Rehof 2005;

Leesatapornwongsa et al. 2016a). Thus, instead of exploring all possible schedules, one

can �x a bug depth d and only explore a su�cient family of schedules that guarantees

that for every choice of d events, every ordering of these events is covered. The families

of schedules providing this guarantee are called d-hitting families of schedules; we study

them extensively in the thesis. In particular, we show that in many cases there are explicit

constructions of d-hitting families of size logarithmic, polylogarithmic, or polynomial in

the number of events. Executing schedules from these hitting families leads to an e�ective

way to uncover bugs of depth up to d .

1.1 Abstract Testing
Both bug-�nding scenarios can be phrased as testing problems in an abstract testing

framework which we de�ne in Chapter 3. The framework consists of tests, testing goals,

and goal coverage; in a concrete situation, these are chosen so that covering all testing

goals guarantees discovery of any bugs that may exist in the system. A set of tests that

covers all testing goals is called a covering family. A covering family that is exponentially

smaller than the set of tests yields, at least in principle, an e�ective testing procedure,

since it usually means we can e�ectively execute su�ciently many tests to cover all testing

goals, and hence discover any bugs in the system.

Even without knowing the exact nature of tests, testing goals, and the notion of

goal coverage, there is a way to derive a useful bound on the size of optimal covering

families using a combinatorial technique known as the probabilistic method (Alon and

Spencer 2004). In this technique, in order to show that a combinatorial object with certain

properties exists, one argues that a randomly chosen object from a suitable probability

space has the property with positive probability. Since the probability is positive, there

must be at least one object—we do not know which one—with that property.

To see the connection to testing, assume we have a set of tests, a set of testing goals,

and some notion of goal coverage. The combinatorial object whose existence we want

to show using the probabilistic method is a covering family of initially unknown size N ;

we will choose a suitable N at the end. The outline of the argument is as follows. Fix a

testing goal and suppose that a randomly chosen test covers the goal with probability at

least p > 0. Then, a set of N independently chosen random tests does not cover this goal

with probability at most (1 − p)N , and it is not a covering family with probability at most

4 CHAPTER 1. INTRODUCTION

m · (1−p)N (by the union bound), wherem is the number of testing goals. By picking N to

be Ω(p−1
logm), this probability can be made less than 1, showing that a covering family

of this size exists. Moreover, for a given ϵ > 0, by picking N to be Ω(p−1(logm + log ϵ−1)),
the probability can be made less than ϵ , showing that a family of N randomly chosen tests

is a covering family with probability at least 1 − ϵ . Thus, by running all tests from the

constructed family, we are guaranteed with high probability that we have run at least one

test for each coverage goal.

1.2 Testing with Random Partitions

Most bugs in distributed systems found by Jepsen can be manifested by tests of the

following nature (see Chapter 2 for examples). First, a small sequence of operations “sets

up” the system in a special state. Then, a carefully chosen network partition separates the

system into two or more blocks which cannot communicate among each other. Then, a

further sequence of operations are performed, often in each of the di�erent blocks of the

partition. Finally, the partition is healed and a �nal set of operations are performed. This

sequence (perform operations, introduce failures, perform further operations) may need

to be repeated a few times at most. Depending on the nature of the network partition

introduced, we introduce and study the following coverage notions.

k-Splitting. Consider a distributed application consisting of processes a1, . . . , an. We

�x k > 0, and consider partitions of the network into k disjoint blocks. Intuitively, we

want to test the application for all possible ways of splitting the processes into k di�erent

groups. That is, for every k processes, we would like to test what happens if these k
processes cannot communicate with each other. This is formalized using the notion of

splitting coverage. A k-partition splits processes ai1 , ai2 , . . . , aik if these processes all end

up in di�erent blocks of the partition. The splitting coverage asks that for every choice of

k processes there is a test that splits them. For example, our application could involve

two di�erent types of quorums, and for each quorum there could be a leader (cf. Chronos

in Section 2.3). A bug may occur if the two leaders are unable to communicate. Since we

a priori do not know which two processes are leaders, we want tests such that for every

pair (a,b) of processes, there is a test where a network failure partitions the system into

two blocks such that the processes a and b cannot communicate with each other. This is

an example of splitting coverage for k = 2. For the Jepsen bugs, values k = 2 and k = 3

su�ced for all bugs that fall under the scope of splitting coverage.

1.2. TESTING WITH RANDOM PARTITIONS 5

(k, l)-Separation. Processes in distributed applications often have a role. For example,

processes may be clients, or replicas of shared state, or replicas managing consensus

protocol (e.g., Zookeeper instances). Thus, a natural requirement is to ensure certain

subsets of roles stay together in a split and are separated from some other subset. This

is formalized using the notion of separating coverage: for �xed k, l > 0 and every pair of

collections of k and l roles, separating coverage requires that the collection of k roles is

separated by a partition from the collection of l roles. For example, suppose our application

is a sharded system, where each shard is replicated with a replication factor f = 3. A

bug may occur if the leading replica is separated from the two following replicas. Again,

since we a priori do not know which processes form the set of replicas, and which one

among them is the leader, we want tests such that every choice of one and two processes

are separated by a partition. This is an example of splitting coverage for k = 1 and l = 2.

Again, for bugs reported by Jepsen, values of k and l up to 3 su�ce for all bugs that fall

under the scope of separating coverage.

Minority isolation. In addition to separating small subsets of processes, we often wish

to impose cardinality constraints. For example, it is important to cover cases in which the

current leader is in the block of a partition with fewer nodes in order to force a new leader

election. To study this, we introduce the notion of minority isolation: for each process,

this coverage notion requires that the process is in the smaller block of a bipartition.

Empirically, these coverage notions capture a large class of fault tolerance bugs found by

Jepsen in distributed systems. In each case, for a �xed testing goal (a process, a set of k
processes, or a pair of k and l processes) we show we can bound the probability that a

random test (a bipartition or a k-partition) covers the goal (isolates, splits, or separates

the processes). The bound depends on parameters k, l , but does not depend on n—the size

of the system. This allows us to construct small families of tests that cover all goals with

high probability by picking su�ciently many tests uniformly at random. Our results thus

provide a theoretical justi�cation for the e�ectiveness of random testing in this domain.

One caveat is the notion of a “bug.” A famous result from distributed systems, called

the CAP theorem (Brewer 2000; Gilbert and Lynch 2002), asserts that no distributed system

can be simultaneously consistent (roughly, linearizable), available, and partition tolerant.

The precise intension of CAP and guarantees provided by speci�c systems is a matter

of considerable debate in the systems community (Brewer 2012). For example, under

partitions, a distributed database may give up availability or consistency. However, in

real systems, programmers navigate a rich space of tradeo�s with many relaxed notions

of availability or consistency. What constitutes a correct test oracle is usually up to the

programmers of the system to decide (see, e.g., Kingsbury (2013), and discussions on his

6 CHAPTER 1. INTRODUCTION

bug reports on Github). In the thesis, in general we do not specify the property used to

determine whether an error has occurred: we only guarantee that all testing goals are

met. It is up to the programmer to write appropriate test oracles to check for problems.

1.3 Testing with Hitting Families

The testing task involving schedules of concurrent events can also be phrased in general

terms: given a �xed bug depth d , tests are schedules of events, testing goals are ordered

sets of d events, and a schedule covers an ordered set S if it “hits” S , that is, the events

appear in the schedule in the same relative order as in S . A covering family in this setting

is called a d-hitting family of schedules.
If the program consists of n concurrent events (that is, the events form an antichain),

a schedule is simply a permutation of these events. An ordered set of d events appears

in a random permutation in the same relative order with probability 1/d!, and there are(
n
d

)
d! ≤ nd ordered sets of d events. Hence our general construction shows existence of a

d-hitting family of size d ·d! logn. While being optimal for d ≥ 3, this bound is suboptimal

for d = 2: all bugs involving two events can be exposed with just two schedules! Likewise,

if the events in the program form a non-trivial partial order, our general construction may

give a suboptimal bound. Thus, we explore other ways of constructing hitting families.

We show that if the events in a concurrent program are partially ordered as a tree

of height h, we can explicitly construct a d-hitting family of size O (exp(d) · hd−1). In

particular, for balanced trees, our construction is polylogarithmic in the number of events.

In the special case of d = 3, we can further improve the bound: we give an explicit

construction of a 3-hitting family of size 4h, which is optimal up to a constant factor. The

construction in fact extends to a larger class of partial orders known as series-parallel

orders, albeit with a more complicated upper bound whose optimality is still open.

Our notion of d-hitting families is closely related to the notion of order dimension for

a partial order, de�ned as the smallest number of total orders, the intersection of which

gives rise to the partial order (Dushnik and Miller 1941; Trotter 2001). Speci�cally, the

size of an optimal 2-hitting family is the order dimension of a partial order, and the size

of an optimal d-hitting family is a natural generalization. To the best of our knowledge,

general d-hitting families have not been studied before for general partial orders.

From the dimension theory for partial orders we know that even for d = 2 there are

examples of partial orders with O (n) elements whose smallest 2-hitting family has Ω(n)
schedules (see Example 5.1). Therefore, there is no hope for logarithmic or polylogarithmic

d-hitting families for general partial orders. Moreover, computing and even approximating

the dimension for general partial orders are known to be hard problems (Yannakakis 1982;

1.3. TESTING WITH HITTING FAMILIES 7

Hegde and Jain 2007; Chalermsook, Laekhanukit, and Nanongkai 2013). Nevertheless,

general partial orders arise as execution models in realistic distributed systems. To make

things worse, in realistic systems the partial order of events may be unknown in advance,

that is, events and their relation to previous events may be revealed as the system is

running. Thus, a challenge is to come up with a small d-hitting family online (i.e., along

with the execution).

An online construction for d-hitting families was demonstrated by Burckhardt et

al. (2010) for multithreaded, shared-memory programs. Their algorithm, called PCT
(Probabilistic Concurrency Testing), instruments a program with randomized schedule

points such that the resulting program is guaranteed to uniformly sample ad-hitting family

of schedules. In fact, PCT guarantees its schedules are sampled from a stronger variant of

d-hitting family, which we call a strong d-hitting family.
1

The key idea underlying the

PCT construction is to represent the underlying partial order of events as a decomposition

of k chains, one per thread. The events are then cleverly scheduled from these chains so

that each d-tuple of events is hit with probability at least 1/(knd−1), where n is the total

number of instructions. Unfortunately, it was not known how this construction could

be generalized for concurrency models in which the decomposition cannot be computed

based on syntactic structures like threads. For example, an e�cient PCT procedure was

not known for distributed programs communicating via asynchronous message passing,

where a naive mapping of each asynchronous task to a thread would lead to a very

pessimistic procedure.

In this thesis, we provide an online construction of d-hitting families for arbitrary
partial orders. Our construction uses the combinatorial notion of adaptive chain covering
(Felsner 1997); we connect this notion with strong hitting families. In adaptive chain

covering, the partial order is provided one element at a time, in an “upgrowing” manner.

That is, the new element is guaranteed to be maximal among the elements seen so far. The

adaptive chain covering algorithm must incrementally maintain a set of chains that form

a chain covering—a decomposition of the partial order into a (not necessarily disjoint)

union of chains. A sequence of deep results show that the optimal number of chains in an

adaptive chain covering algorithm is exactly the size of an optimal strong 1-hitting family

(Felsner 1997; Kloch 2007). We generalize this result to show that the size of an optimal

strong d-hitting family is bounded above by the optimal number of chains times nd−1
,

where n is the number of elements in the partial order. In particular, we re-derive the PCT

result in this very general setting, since the size of the chain covering is k for k threads.

The best known adaptive chain covering algorithms are in fact online chain partitioning
algorithms—they decompose the partial order into a disjoint union of chains. It is not

known how to e�ectively exploit the fact that we do not need partitions, but merely

1
The precise relationship is that every strong d-hitting family is a (weak) (d + 1)-hitting family.

8 CHAPTER 1. INTRODUCTION

coverings (Bosek, Felsner, et al. 2012). Optimal online chain partitioning algorithms use

at most w2
chains, where w is the width of the partial order (Agarwal and Garg 2007).

(By Dilworth’s theorem for partial orders, w is a lower bound (Dilworth 1950).) Thus,

we get online strong d-hitting families of size w2nd−1
for partial orders of width w and

n elements. Using a general instrumentation technique, we get a randomized testing

algorithm, named PCTCP (Probabilistic Concurrency Testing with Chain Partitioning),

with a 1/(w2nd−1) probability of hitting each d-tuple for arbitrary partial orders, presented

online, with (unknown) width w .

While the proof of correctness is involved, the �nal algorithm is surprisingly simple:

it involves maintaining prioritized chains of events, where the priorities are assigned

randomly, picking the highest priority events at all times, and reducing the priorities of

chains at d − 1 randomly chosen points in the execution.

We have implemented this algorithm for distributed protocol implementations written

in P# (Deligiannis, McCutchen, et al. 2016), as well as for distributed applications such as

Zookeeper and Cassandra, on top of the SAMC model checker (Leesatapornwongsa et al.

2014a). We show empirically that PCTCP is e�ective in �nding bugs in these applications

and usually outperforms naive random exploration.

1.4 Contributions
In summary, in this thesis we study the occurrence of the small-world phenomenon in

distributed systems; in particular, how to use the phenomenon as a basis for e�ective

testing procedures. We use combinatorial techniques to develop testing procedures with

rigorous guarantees of �nding bugs. Our contributions can be summarized as follows.

• We introduce an abstract framework of tests, testing goals, and goal coverage. We

provide a general combinatorial construction relating the probability that a random

test covers a testing goal to the size of a random test set that is overwhelmingly likely

to provide full test coverage. This result applies to any random testing methodology.

• We introduce and study notions of test coverage for distributed systems with

network partition faults. We show that our coverage notions can explain many

di�erent bugs found in production systems.

• We introduce d-hitting families as a framework for �nding bugs of depth d , which

arise due to a speci�c ordering of d concurrent events. The size of optimal d-

hitting families generalizes the order dimension for partial orders, and the families

themselves are natural combinatorial objects of independent interest.

1.4. CONTRIBUTIONS 9

• We provide explicit constructions of d-hitting families for trees and series-parallel

partial orders. The constructions for trees are close to optimal: up to a small constant

factor for d = 3 and up to a polynomial for d > 3. Our families of schedules can be

exponentially smaller than the size of the partial order.

• We develop an algorithm for the online construction of hitting families for arbitrary

partial orders. The construction incorporates online partitioning of a partial order

into a number of disjoint linearizations and enables generalizing the PCT algorithm

and its probabilistic guarantees to work with arbitrary partial orders. The algorithm

is the basis for a simple randomized testing procedure with guaranteed lower bounds

on the probability of �nding depth-d bugs.

• We implement PCT with chain partitioning (PCTCP) for programs written in the P#

framework, as well as the real-word distributed systems Zookeeper and Cassandra.

We provide our practical design choices such as modeling node crashes as events in

the system or handling livelocks that are likely to occur in some distributed systems.

The material presented in the thesis has been published in parts in the following publica-

tions.

1. Dmitry Chistikov, Rupak Majumdar, and Filip Niksic (2016). “Hitting Families of

Schedules for Asynchronous Programs”. In: Computer Aided Veri�cation - 28th In-
ternational Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II. vol. 9780. Lecture Notes in Computer Science. Springer, pp. 157–176. doi:

10.1007/978-3-319-41540-6_9

2. Rupak Majumdar and Filip Niksic (2018). “Why is random testing e�ective for

partition tolerance bugs?” In: PACMPL 2.POPL, 46:1–46:24. doi: 10.1145/3158134

3. Burcu Kulahcioglu Ozkan et al. (2018). “Randomized Testing of Distributed Systems

with Probabilistic Guarantees”. In: PACMPL 2.OOPSLA, 160:1–160:28. doi: 10.
1145/3276530

http://dx.doi.org/10.1007/978-3-319-41540-6_9
http://dx.doi.org/10.1145/3158134
http://dx.doi.org/10.1145/3276530
http://dx.doi.org/10.1145/3276530

10 CHAPTER 1. INTRODUCTION

Chapter 2

Motivating Examples

The CAP theorem (Brewer 2000; Gilbert and Lynch 2002) states that a distributed system

running on an unreliable network cannot simultaneously satisfy consistency, availability,

and partition tolerance. Since the network is unreliable and network partitions do happen,

at �rst glance this means a system has to make a choice between consistency and availabil-

ity. However, in reality the situation is far from binary—various levels of consistency and

availability form a rich landscape of tradeo�s, which system developers have to navigate

knowingly or unknowingly. While doing so, they inevitably encounter pitfalls.

While there are certainly intricate pitfalls that are exposed only in extremely rare

combinations of events and failures, many problems in existing systems are discoverable by

random testing. An evidence to this is a series of online articles by Kingsbury (2013–2018),

describing in-depth analyses of distributed systems within a testing framework called

Jepsen
1
. Using Jepsen, Kingsbury has analyzed and discovered issues in a whole range of

distributed systems: etcd, Postgres, Redis, Riak, MongoDB, Cassandra, Kafka, RabbitMQ,

Consul, Elasticsearch, Aerospike, Zookeeper, and Chronos, to name a few. In each case,

the approach is similar: the system under scrutiny is subjected to random sequences

of operations under failure modes such as random network partitions. The recorded

behavior of the system is then analyzed against a model to establish its correctness. The

Jepsen framework provides a scripting framework to de�ne operations, failure modes,

correctness conditions, and checkers speci�c to a particular system. While setting up all

these things for a given system need not be simple and often requires a lot of intuition

and understanding of the system, in most cases, the test, once set up, uncovers subtle

issues within seconds, even with random sequences of operations and partitions.

In the rest of the chapter, we showcase three typical bugs found by Kingsbury and use

them to motivate the notions of coverage related to network partitions, which we study

1http://jepsen.io/

11

http://jepsen.io/

12 CHAPTER 2. MOTIVATING EXAMPLES

in Chapter 4. We also showcase two bugs found by the author of the thesis that do not

arise due to network partitions, but an unexpected interleaving of concurrent events. We

use these bugs to motivate the notions of coverage related to concurrent events, which

we study in Chapters 5 and 6.

2.1 Etcd
Etcd

2
is a distributed key-value store. It is intended to be used for storing small amounts of

critical data, which a complex distributed application might need for service coordination,

distributed locking, write barriers etc. Hence, etcd’s foremost design goal is to provide

strong consistency. To achieve this, operations are committed through consensus, for

which etcd uses an implementation of the Raft algorithm (Ongaro and Ousterhout 2014).

Since consensus requires communication between nodes, it may be unachievable

while the network is partitioned. Hence, strong consistency in this case comes at the

expense of reduced availability. In order to improve availability, in etcd’s API version 2,

read operations by default do not go through consensus. Instead, a node responds to a

read request by simply returning the local copy of the value. This design choice is an

example of a tradeo� between consistency and availability.

But what exactly is the manifestation of this tradeo� on the consistency side? We can

check this with a Jepsen test. We set up etcd on �ve nodes and start �ve clients to issue

random read, write, and compare-and-swap operations on a single key. Additionally, we

start a special process (called nemesis in Jepsen) to randomly partition the network into

two blocks to simulate network failures. We record a history of execution, and analyze it

for linearizability—each operation should give an appearance of being executed atomically

between its invocation and completion.

Figure 2.1 (left) shows an inconsistent state found by Jepsen. The arrows “w i” and “r”
refer to client requests to write the value i or to read the shared state, respectively (for

simplicity, we omit the key), and “w ok” and “r i” denote the system responses con�rming

the write and returning the value read, respectively. The blue rectangle shows the Raft

consensus. In the picture, time �ows downward, and the values show each node’s own

view of the shared state. The red line marks a network partition that separates n1 and n4

from n2, n3, and n5. A write of the value 1 after the partition triggers a new leader election

in Raft, after which the new value is committed (by the right block). The inconsistent

behavior is that after the partition, the node n1 returns its local stale value 0 even though

it is not part of the quorum.

The developers of etcd were aware of this behavior. To give users stronger consistency,

2https://github.com/coreos/etcd

https://github.com/coreos/etcd

2.2. KAFKA 13

n1 n4 n2 n3 n5

0 0 0 0 0

1 1 1

w 0

w ok

w 1

w ok
r

r 0

n1 n4 n2 n3 n5

0 0 0 0 0

1 1 1

w 0

w ok

w 1

w okr

r 0

Figure 2.1: Non-linearizable execution histories in etcd. On the left, the read operation is

invoked in the default mode—returning the local copy of the value—and on the right it is

invoked in the consistent mode—redirecting the request to the Raft leader.

the read API provides an option called consistent, which causes nodes to redirect read

requests to the leader elected as part of the Raft consensus algorithm. This option is

another example of navigating the CAP landscape: we seemingly avoid both the overhead

of full consensus and the inconsistent behavior. Unfortunately, the same Jepsen test setup

quickly discovers another inconsistency, shown in Figure 2.1 (right). Assume that n4 was

the Raft leader to begin with. The write request w 0 is committed. At this point, the

network partition separatesn1 andn4 from the rest. Realizing that the leader is unavailable,

nodes in the larger block elect n3 as the new leader and successfully commit a new write

of the value 1. Nodes n1 and n4 are unaware of the new leader election. Thus, n1 forwards

a read request to n4, which returns the stale value 0. The problem is still that reads do not

require consensus, so the smaller block does not realize the leader has changed.

Since the author of Jepsen reported this behavior
3
, the developers of etcd have included

another option for read called quorum. With this option, reads are committed through

consensus the same way writes are. More recently, consensus for all operations has

become the default behavior in the etcd API version 3.

2.2 Kafka

Kafka
4

is a distributed streaming system: it provides streams of records to which clients

can publish or subscribe. To achieve scalability and fault-tolerance, records in Kafka’s

streams are partitioned into shards, and each shard is replicated by a set of in-sync replicas

(ISR). Within an ISR, one node is designated as a leader: for leader election, Kafka uses

3https://github.com/coreos/etcd/issues/741
4https://kafka.apache.org/

https://github.com/coreos/etcd/issues/741
https://kafka.apache.org/

14 CHAPTER 2. MOTIVATING EXAMPLES

a zk b cw

w ok
w

w ok

Figure 2.2: A diagram of an inconsistent behavior in Kafka.

Zookeeper
5
, a distributed key-value store with strong consistency guarantees similar to

etcd. The leader accepts write requests from clients and forwards them to all replicas in

the ISR. When it receives acknowledgements from all replicas, it sends acknowledgement

to the client. If a replica fails to acknowledge a request, the leader detects the request

has timed out, and removes that node from the ISR. Remaining writes only have to be

acknowledged by the healthy nodes still in the ISR. Should the leader ever fail, any replica

in the ISR can take over, since all of them maintain the same history of records. In this

way, Kafka can theoretically tolerate f − 1 failures with f replicas.

Note that with up to f − 1 failures Kafka provides both linearizability—all nodes in the

ISR replicate records in the same order—and high availability—unresponsive nodes are

automatically removed from the ISR. According to the CAP theorem, Kafka has to give

up partition tolerance. The following Jepsen test, reported by Kingsbury (see Figure 2.2),

shows not only that Kafka gives up partition tolerance, but that in presence of network

partitions a single node failure can cause writes committed to the system to be lost. In a

system consisting of a Zookeeper node and three in-sync-replicas a, b, c , with a being the

leader, nodes b and c are separated from a and the Zookeeper node. Realizing that nodes

b and c are unavailable, node a shrinks the ISR to just itself, and continues processing

writes from the client. Node a then crashes (simulated by a partition that separates a from

all other nodes), and the system enters a state called unclean leader election, in which

any of the nodes b and c (whichever comes to life �rst) can be elected as a new leader.

However, once the new leader starts processing writes, all intermediate writes processed

by node a are lost.

2.3 Chronos
The third bug is from Chronos

6
, a distributed and fault-tolerant job scheduler. Chronos is

meant to schedule jobs with complicated dependency and periodicity speci�cations at the

5http://zookeeper.apache.org/
6https://mesos.github.io/chronos/

http://zookeeper.apache.org/
https://mesos.github.io/chronos/

2.3. CHRONOS 15

correct times. It is used in conjunction with Mesos
7
—a cluster management system that

takes care of managing resources such as CPU and memory in a cluster. Both systems

further depend on Zookeeper as a consistent data store.

There are three kinds of quorums involved in the system. First, Chronos has to

maintain consensus over job scheduling, so Chronos nodes have a notion of leader and

followers. Second, Mesos nodes are divided into “slaves,” which o�er resources and

ultimately run jobs, and “masters,” which take care of resource and job allocation. The

latter also requires consensus, so Mesos masters have their own notion of leader and

followers. And third, Zookeeper is a consistent data store and needs to maintain consensus

over executed operations, so it also has a notion of leader and followers. All three kinds

of leaders need to be able to communicate. Chronos and Mesos need Zookeeper for their

internal coordination, but also for mutual discovery. It is thus not di�cult to imagine

partitions among these nodes may cause problems.

Kingsbury tested the system on �ve nodes n1, . . ., n5. All �ve serve at the same time

as Chronos and Zookeeper nodes. Additionally, nodes n2, n3, and n4 are Mesos masters

and the remaining two are Mesos slaves. During the test, simple jobs are generated and

emitted, while the nemesis randomly partitions the network into two blocks and heals it

back after some time. At the end, a checker examines the history to see whether all jobs

were executed at correct time.

Not suprisingly, as soon as the Chronos leader is separated from the Zookeeper

leader, problems start. In this case Chronos sometimes abruptly crashes, which turns

out to be an undocumented but expected behavior
8
—the programmers considered this

to be a conservative way of preventing inconsistencies while Zookeeper is unavailable.

Suprisingly, however, in the same situation Chronos sometimes does not crash for unknown

reasons.
9

This behavior is marked as a bug and was unresolved at the time this thesis was

written.

The case when Chronos does not crash uncovered another bug
10

that has mean-

while been �xed. The observed execution is illustrated in Figure 2.3. Initially all three

subsystems—Chronos, Mesos, and Zookeeper—go through leader election. Node n1 be-

comes Chronos leader (blue timeline), node n3 becomes Mesos leading master (orange

timeline), and node n5 becomes Zookeeper leader (green timeline). Chronos registers

a new framework with Mesos—this is depicted by an exchange of messages “reg” and

“reg ok” between n1 and n3—and starts scheduling jobs (omitted for simplicity). Next, a net-

work partition separates n1 and n2 from n3, n4, and n5. Chronos leader detects Zookeeper

7http://mesos.apache.org/
8https://github.com/mesos/chronos/issues/513
9https://github.com/mesos/chronos/issues/522

10https://github.com/mesos/chronos/issues/520

http://mesos.apache.org/
https://github.com/mesos/chronos/issues/513
https://github.com/mesos/chronos/issues/522
https://github.com/mesos/chronos/issues/520

16 CHAPTER 2. MOTIVATING EXAMPLES

n1 n2 n3 n4 n5

reg

reg ok

reg

reg fa
il

Figure 2.3: A diagram of a bug in Chronos that prevents jobs from being executed.

connection loss, but does not crash. After another round of elections, n3 becomes Chronos

leader, and n4 becomes Mesos leading master. The partition is resolved, n1 detects the

Zookeeper leader and recognizes n3 as the new Chronos leader.

At this point Chronos tries to register as a completely new framework with Mesos,

instead of re-registring as the original framework. Since according to Mesos all resources

in the cluster are owned by the original framework, there are no available resources for

the new framework, and as a consequence no new jobs are ever started again.

2.4 CTStore

The next two bugs do not involve network partitions and were not discovered by Jepsen.

Instead, they were discovered by a prototype testing framework built around the ideas of

hitting families, which we present in Chapters 5 and 6. The bugs appear in a library called

CTStore, developed by Lenin Ravindranath Sivalingam
11

as part of a research project at

Microsoft. Unfortunately, at the time of writing, the library was not publicly available.

The goal of CTStore is to provide uni�ed usage of a fast but ephemeral cache and a

slow but persistent store, both of which are typically located in a cloud. CTStore provides

an API to retrieve, insert, update, and delete entries. It retrieves an entry from the cache

if it is available there. If not, it retrieves the entry from the persistent store and inserts

it into the cache in order to make future retrievals faster. All of this is done behind the

scene: the user perceives a fast uni�ed store that does the right thing.

The main consistency property guaranteed by CTStore is that if an entry exists in

the cache, it also exists in the persistent store. In order to provide this guarantee, the

11https://www.microsoft.com/en-us/research/people/lenin/

https://www.microsoft.com/en-us/research/people/lenin/

2.4. CTSTORE 17

Insert Delete

Dt

Ip Dp

Ic Dc

Insert Delete

It Dt

Ip Dp

Ic Dc

Figure 2.4: Two bugs in CTStore. The insert operation on the left does not tag the entity

in the cache, which may lead to inconsistent executions. The insert operation on the right

tags the entity, but the inconsistent executions are still possible.

operations that modify the store execute the following protocol: �rst they tag the entry in

the cache with a unique tag (if the entry is not in the cache, they insert it there). Second,

they modify the persistent store by inserting, replacing, or deleting the entry. Finally,

they perform the corresponding modi�cation in the cache, but only if the entry still holds

the same tag from the �rst step.

We tested the library by concurrently executing multiple operations that modify the

same entry, searching for executions that may lead to an inconsistent �nal state. In the

initial version of the library, the insert operation did not follow the protocol described

above: it would skip the �rst step and immediately insert the entry into the persistent

store and the cache, regardless of the tag. Such a shortcut is not correct, as it was revealed

in a test that concurrently inserts and deletes the same entry. The problem is conceptually

depicted in Figure 2.4 (left). The nodes Ip , Ic , and Dt , Dp , Dc represent the steps of the

insert and the delete operation, respectively. The subscripts t , p, and c denote tagging,

persisting, and caching. The solid vertical arrows represent the order in which the steps are

executed, and the dashed horizontal arrows represent the additional ordering constraints

that guarantee the �nal state will be inconsistent. In particular, it is clear that if Dp is

executed after Ip , that is, the entry is removed from the persistent store immediately

after it is inserted, and Ic is executed after Dc , that is, the entry is inserted into the cache

immediately after it is deleted, the execution will end in an inconsistent state. Note that it

does not matter in which order Ip and Dt are executed.

After eliminating the shortcut in the insert operation, we repeated the same test, only

to discover that the protocol still allows inconsistent executions. The problem is shown in

Figure 2.4 (right). If It is executed after Dt , the entry is tagged by the insert’s unique tag.

The entry is then inserted into the persistent store by Ip only to be deleted by Dp . Finally,

18 CHAPTER 2. MOTIVATING EXAMPLES

regardless of when Ic is executed relative to Dp and Dc , the entry is inserted into the cache

since it holds the insert’s tag. Hence, the �nal state is inconsistent. Unfortunately, this

time it is not obvious how to �x the protocol.

2.5 Summary and Coverage Notions
In each of the Jepsen examples, the test setup to manifest the misbehavior involved:

setting up and running the system with a number of nodes and clients; running a random

sequence of operations (reads, writes, etc.) to put the system in a speci�c state; introducing

one or more carefully orchestrated partitions of the network; running a further sequence

of operations, and optionally, further partitions of the network to demonstrate a violation.

Jepsen provides an API to programmatically manage all these steps. In most Jepsen

experiments, though, picking each of these steps randomly demonstrated the misbheaviors.

While the original Jepsen traces contain hundreds or thousands of events, the analysis

of Kingsbury shows that for most bugs one requires a small number of “rounds,” consisting

of a small number of operations and one or two carefully chosen partitions in the system.

In particular, the bugs in Chronos were exposed with a partition separating the Chronos

leader from the Zookeeper leader. The inconsistency in Kafka was exposed with a partition

separating node a and the Zookeeper node from nodes b and c . The inconsistencies in

etcd were exposed with a partition isolating the Raft leader in a smaller block, while the

system received a write request in the larger block, followed by a read request in the

smaller block.

Accordingly, we study the following coverage notions.

k-splitting Given a set of k nodes, the goal is to split them with a network partition, that

is, place each node in a separate block of the partition. The coverage problem is to

split every set of k nodes with a family of partitions.

k, l-separation Given two sets of nodes of size k and l , the goal is to separate them with

a network partition, that is, place the set of k nodes in one block and the set of l
nodes in another block. The coverage problem is to separate every pair of sets of

size k and l with a family of partitions.

minority isolation Given a node x in a system with n nodes, the goal is to isolate x in a

minority block—a block containing less than n/2 nodes. The coverage problem is to

isolate every element in a minority block with a family of partitions.

In addition to these coverage notions relating to network partitions, we require a set of

operations to occur before or after the partition. Thus, we also study the following notion:

2.5. SUMMARY AND COVERAGE NOTIONS 19

sequences of operations Given a sequence of k operations, the coverage problem is to

observe this sequence as a contiguous subsequence of a larger sequence.

Our goal is to combine partition coverage with coverage w.r.t. short sequences of opera-

tions.

The test exposing the bugs in Chronos is an example of k-splitting with k = 2, but

also of k, l-separation with k = l = 1, as the two notions overlap in this case. The test

exposing the inconsistency in Kafka is an example of a sequenced k, l-separation: we

need to observe a 2, 2-separating partition followed by a 1, 3-separating partition. Finally,

the test exposing the inconsistencies in etcd is an example of minority isolation combined

with a sequence of two operations. In each case, the separation is accompanied with short

sequences of operations (e.g., reads or writes). Our results show that in each of these cases

a small number of randomly generated partitions and operations achieves full coverage

with overwhelming probability.

It is worth mentioning that our coverage notions are not speci�cally tied to the three

systems we picked as examples. In fact, almost all anomalies discovered and described

by Kingsbury fall under one or more of our coverage notions. There is, however, an

exception: a split-brain issue in Elasticsearch
12

involving an intersecting partition—one

in which blocks are not disjoint. In this particular issue, a node acts as a bridge between

two otherwise disconnected blocks and facilitates a situation in which two nodes on the

opposite sides of the partition become leaders and start processing write requests from

clients. Note that an intersecting partition {X ,Y }, where Z = X ∩ Y is nonempty, can

be modeled by a partition {X \ Z ,Z ,Y \ Z }. Therefore, the Elasticsearch issue would fall

under a straightforward generalization of k, l-separation with an additional block, and

our techniques would apply. We omit this generalization for simplicity.

In the CTStore example, the test setup is di�erent than the one in the Jepsen examples.

Instead of searching for a combination of operation sequences and network partitions,

we search for an interleaving of concurrent events, also called a schedule, that causes

a bug. Even though the total number of events in the example is not large, we can

see that both bugs depend on the relative ordering of exactly four events: the ordering

Ip → Dp → Dc → Ic in the �rst case and the ordering Dt → It → Ip → Dp in the

second case are guaranteed to lead to an inconsistent state. If the concurrent insertion

and deletion of the same entry were part of a larger execution with a number of unrelated

events, the same orderings of four events would still cause the bugs.

We study two coverage notions related to schedules of events:

d-hitting Given a d-tuple (e1, . . . , ed) of events from a partially ordered set of events, the

goal is to hit the tuple with a schedule, that is, totally order all events in a way that

12https://github.com/elastic/elasticsearch/issues/2488

https://github.com/elastic/elasticsearch/issues/2488

20 CHAPTER 2. MOTIVATING EXAMPLES

the events from the tuple appear in the relative ordering e1 → . . . → ed . The hitting

problem is to hit every d-tuple consistent with the partial order with a family of

schedules.

strong d-hitting Given a d-tuple (e1, . . . , ed) of events from a partially ordered set of

events, the goal is to strongly hit the tuple with a schedule, that is, totally order all

events in a way that for every index i , 1 ≤ i ≤ d , the event ei appears at the last

possible position before ei+1, . . . , ed . In other words, if some event e appears after

the event ei in the schedule, it appears there because it is partially ordered after

some ej for j ≥ i to begin with. The strong hitting problem is to hit every d-tuple of

events with a family of schedules.

The two CTStore bugs are examples of d-hitting for d = 4. As for the strong d-hitting

coverage, at �rst it may seem unclear why one would study such a notion. The full

reasons will become apparent in Chapter 6. For now let us note that the CTStore bugs

are examples of strong d-hitting for d = 2. To see this, consider the �rst bug and note

that every schedule that strongly hits (Dp, Ic) orders Ip before Dp and Dc before Ic , which

guarantees an inconsistent state. Similarly, in the second case every schedule that strongly

hits (It ,Dp) orders Dt before It and Ip before Dp , again guaranteeing an inconsistent state.

We can roughly think of the parameter d in strong d-hitting as a number of additional

ordering constraints we need to add to the partial order in order to expose a bug. As we

shall see in Chapter 6, the strong d-hitting coverage implies the (d + 1)-hitting coverage.

In Chapters 5 and 6 we study constructions of families of schedules that achieve full

hitting and strong hitting coverage.

Chapter 3

Abstract Testing

In this chapter, we introduce the notions of tests and testing goals, and we state and prove

a general theorem on goal coverage. We leave the notions abstract—we will instantiate

them in speci�c testing scenarios in the following chapters.

3.1 Covering Families
We begin with the following de�nition.

De�nition 3.1. Let T be a nonempty set of tests and G a nonempty set of testing goals.
A test t ∈ T may or may not cover a testing goal. A nonempty set F of tests is a covering
family for G if for each x ∈ G, there is a test t ∈ F such that t covers x .

Covering families are the central objects of study in this thesis. In particular, we are

interested in their size. Constructing covering families of size exponentially or doubly-

exponentially smaller than the set of all tests is the basic premise of e�ective testing, as

this typically means we have a way to e�ectively cover all testing goals.

It may seem that in the abstract setting, without knowing exactly what the tests,

testing goals, and the notion of goal coverage are, there is not much we can say about the

size of covering families. However, there is a trivial but far-reaching observation we can

make: a test can cover more than one testing goal, and conversely, a testing goal can be

covered by more than one test. Consequently, covering families can contain fewer tests

than T , the set of all tests. We can quantify the size of covering families more precisely

if we know a positive lower bound on the number of tests that cover a �xed goal. More

generally, if we equip the set T with a probability distribution, and we know a positive

lower bound on the probability that a random test covers a �xed goal, we obtain the

following theorem.

21

22 CHAPTER 3. ABSTRACT TESTING

Theorem 3.1. Let T be a set of tests and G a set of m testing goals. Let p > 0 be a
lower bound on the probability that a random test covers a �xed goal. Given ϵ > 0, let F
be a nonempty family of tests chosen independently and uniformly at random such that
|F | ≥ p−1(logm + log ϵ−1). Then F is a covering family with probability at least 1 − ϵ .
Moreover, there exists a covering family of size

⌈
p−1

logm
⌉
(or 1 ifm = 1).

Proof. If p = 1, then every test with the positive probability of being chosen covers all

goals. Therefore, any family containing at least one such test is a covering family, and the

result trivially holds.

Thus, assume p < 1 and consider a �xed testing goal x . A random test does not

cover x with probability at most 1 − p. Since the tests in F are chosen independently,

the probability that F does not cover x is at most (1 − p) |F | . By the union bound, the

probability that there exists a testing goal not covered by F is at mostm(1 − p) |F | .

If m > ϵ , then logm + log ϵ−1 > 0. Recall that − log(1 − p) = p +
p2

2
+ . . . > p, so

p−1 > −1/ log(1 − p). By combining the two inequalities, we get

|F | ≥ p−1(logm + log ϵ−1) >
− logm − log ϵ−1

log(1 − p)
= log

1−p (m
−1ϵ) .

Note that the �nal inequality trivially holds if m ≤ ϵ , since then log
1−p (m

−1ϵ) ≤ 0.

Therefore, in both cases m(1 − p) |F | < ϵ , and hence the probability that F covers all

testing goals is greater than 1 − ϵ . In particular, if we take ϵ = 1, the probability that F

covers all goals is positive. By the probabilistic method, there must exist a covering family

of size dp−1
logme, or 1 ifm = 1, since a covering family needs to be nonempty. �

There is always a trivial covering family of size |G| (assuming each testing goal can be

covered by some test). The key observation in Theorem 3.1 is that there exist covering

families of size proportional to log|G|; thus, if we can show the probability p is “high,”

we can get an exponentially smaller covering family of tests, and moreover, a randomly

chosen test set can cover all goals with high probability. Of course, a caveat is that showing

p is “high” usually means showing it is a constant. In general, this may not be the case,

that is, p may depend on |T | and |G|. For instance, suppose we only know that each

testing goal is covered by some test, and the tests are sampled uniformly at random. Then

we can take p = 1/|T | as the lower bound. The theorem then tells us there is a covering

family of size |T | log|G|, which is not very useful since we already know that the set T

itself is a covering family of size |T |.

As an example of non-trivial usage of Theorem 3.1, let us demonstrate how it can

be used to analyze the coverage notion involving sequences of operations motivated in

Section 2.5. Suppose we have r ≥ 1 di�erent operations, and we are generating a sequence

3.1. COVERING FAMILIES 23

of operations s uniformly at random. Suppose we also have a set T of target sequences

of length k ≥ 1, and we want to observe any target sequence t ∈ T as a contiguous

subsequence of s .

Proposition 3.2. Let ϵ > 0, let T be a set of sequences of operations of length k ≥ 1, and
let s be a sequence of n ≥ 1 operations chosen independently and uniformly at random such
that n ≥ k + krk |T |−1

log ϵ−1. Then some target sequence t ∈ T is a contiguous subsequence
of s with probability at least 1 − ϵ .

Proof. Split the sequence s into bn/kc non-overlapping subsequences of length k . The

probability that some t ∈ T occurs among these subsequences is clearly lower than the

probability that some t ∈ T occurs in s . However, we can think of the non-overlapping

sequences as bn/kc sequences of length k generated independently and uniformly at

random.

The probability that one of these sequences matches a sequence in T is p = |T |/rk .

The number of testing goals in this case ism = 1, namely any target sequence t ∈ T . Since

bn/kc > n/k − 1, we have

bn/kc > rk |T |−1
log ϵ−1 = p−1(logm + log ϵ−1) .

Hence the result follows from Theorem 3.1. �

Example 3.1. Consider the inconsistency in etcd in Figure 2.1 (left). In order to expose

it, we need to observe a right combination of read and write operations during a net-

work partition with two blocks. Note that it does not really matter how the network is

partitioned, as long as we follow up with a write that changes the value in the larger

block, and a read to any node in the smaller block. For simplicity, assume we only have

three kinds of operations—read, write 0, and write 1—and each can be directed to any

of the �ve nodes involved in the experiment. Thus, in total we have 15 operations, each

occurring with equal probability.
1

We form an amalgamated operation by conjoining

a partition with two read or write operations. Assuming we only partition into blocks

of size 2 and 3, this gives us a total of r = 10 · 15 · 15 = 2250 amalgamated operations.

Our target operations consist of a partition followed by one of two read operations and

one of three write operations. Thus the set T of target amalgamated operations has

size 10 · 2 · 3 = 60. Applying Proposition 3.2 with k = 1, we see that in a sequence of

61 amalgamated operations, we would observe a target operation—and thus expose the

inconsistency—with probability at least 80%. �

1
In the real Jepsen experiment, clients were also issuing compare-and-swap operations with values

ranging from 1 to 5, and the probability distribution over operations was not uniform.

24 CHAPTER 3. ABSTRACT TESTING

As another example, we analyze the notion of d-hitting coverage from Section 2.5 for a

special case of n concurrent events.

Example 3.2. Consider a set A of n concurrent events. Since the events are concurrent,

every permutation of the set forms a valid schedule. Recall that for a givend-tuple of events

(e1, . . . , ed) ∈ Ad
, the goal of the d-hitting coverage is to hit the tuple with a schedule,

that is, totally order A so that e1, . . . , ed appear in the relative ordering e1 → . . . → ed .

Hence, the set of tests T in this case is the set of schedules of A, and the set of goals G is

the set of d-tuples Ad
.

If the schedules are sampled uniformly at random, what is the probability that a

random schedule hits a �xed d-tuple? Since a schedule is just a permutation, it arranges

the d events from the tuple in one of d! ways without giving preference to any of them.

Hence, the hitting probability is p = 1/d!. Since the number of d-tuples is

(
n
d

)
d! ≤ nd , it

follows from Theorem 3.1 that there exists a covering family of size d! · d logn. �

3.2 Independent Goals
In the proof of Theorem 3.1 we resorted to the union bound to bound the probability

that some testing goal was not covered by the family F . This step potentially introduced

imprecision in the analysis, but without further assumptions on the independence of

covering di�erent goals, there does not seem to be a better way to complete the proof.

Let us for a moment visit the other extreme, that is, let us assume that for any two goals

д,д′ ∈ G, a random test covers д independently of covering д′. Since the family F covers

a �xed goal with probability at least 1 − (1 − p) |F | , the probability that it covers all goals

is at least

(
1 − (1 − p) |F |

) |G|
, and this probability is positive if (1 − p) |F | < 1, that is, if

|F | ≥ 1. In other words, if the goals are mutually independent, we can cover all of them

with a single test.

As it turns out, there is a middle ground between assuming nothing about the inde-

pendence and assuming that any two goals are mutually independent. In particular, there

is a theorem known as the Lovász local lemma (Erdős and Lovász 1975; Alon and Spencer

2004).

Theorem 3.3 (Lovász local lemma). Let A1, . . . ,An be events in an arbitrary probability
space. Suppose that each event is independent of all the other events except for at most c of
them, and that each event occurs with probability at most p. If ep (c + 1) ≤ 1, where e is the
base of the natural logarithm, then none of the events occurs with positive probability. �

If we know that every testing goal is independent of all but at most c other goals, then

3.2. INDEPENDENT GOALS 25

the Lovász local lemma can sometimes provide a better bound on the size of covering

families than Theorem 3.1. We show an instance of this in the following example.

Example 3.3. As in Example 3.2, suppose we have a set A of n concurrent events and

we want to hit every d-tuple from Ad
. Let д = (e1, . . . , ed) and д′ = (e′

1
, . . . , e′

d
) be two

d-tuples that do not share any events, that is, ei , e′j for all i, j such that 1 ≤ i, j ≤ d .

What is the probability that a random schedule hits д conditioned on hitting д′? Since д
and д′ do not overlap, we can repeat the same argument from Example 3.2: the schedule

arranges the events e1, . . . , ed in one of d! ways without giving preference to any of them.

Hence, the conditional hitting probability is 1/d!, the same as the unconditional one. Thus,

the goals д and д′ are mutually independent. On the other hand, if the goals overlap, in

general they are not independent. To see this, take A = {1, 2, 3} and let д = (1, 2) and

д′ = (1, 3). There are 3 schedules that hit д′, namely 123, 132, and 213. Among these, 2

schedules hit д, so the conditional hitting probability is 2/3 , 1/2.

From the above analysis, we conclude that every d-tuple is independent of (n − d)d

other d-tuples, where (n − d)d = (n − d) (n − d − 1) · · · (n − 2d + 1) is the falling factorial

power. Let c = nd − (n − d)d − 1 and let F be a family of schedules chosen independently

and uniformly at random such that

|F | ≥ d!

(
1 + log

(
nd − (n − d)d

))
= d! (1 + log(c + 1)) .

A calculation similar to the one in the proof of Theorem 3.1 shows

|F | ≥
−1 − log(c + 1)

log(1 − 1/d!)
= log

1−1/d!

(
e−1(c + 1)−1

)
.

Since the probability that a �xed goal is not covered by F is p = (1 − 1/d!) |F | , using the

above inequality we get ep (c + 1) ≤ 1; thus, by the Lovász local lemma, F is a covering

family with positive probability.

To see thatd!(1+log(c+1)) is an asymptotic improvement overd! ·d logn, we calculate

the following limit using L’Hôpital’s rule.

L := lim

n→∞

1 + log(c + 1)

d logn
= lim

n→∞

n(c + 1)′

d (c + 1)

Note that

c + 1 = nd − (n − d)d

= nd − (n − 1)d + (n − 1)d − . . . + (n − d + 1)d − (n − d)d

= d (n − 1)d−1 + . . . + d (n − d)d−1

= dnd−1 +O (nd−2) .

26 CHAPTER 3. ABSTRACT TESTING

Therefore, n(c + 1)′ = d (d − 1)nd−1 +O (nd−2), and hence L = (d − 1)/d . In other words,

d!(1+ log(c + 1)) is asymptotic to d!(d − 1) logn, which is a slight improvement compared

to the bound obtained in Example 3.2. �

Chapter 4

Testing with Random Partitions

In this chapter, we study the coverage notions related to network partitions as instances

of the general construction from Chapter 3. We start with combinatorial preliminaries

about set partitions.

4.1 Combinatorial Preliminaries
Throughout this section, let U = {1, . . . ,n} be a �xed set (a “universe”) of n elements. A

partition ofU is a set of nonempty subsets ofU that are pairwise disjoint and in the union

give the whole U . We refer to the sets in a partition as blocks. If a partition has k blocks,

we call it a k-partition. A balanced partition is a partition with blocks di�ering in size at

most by 1.

Let us recall a few results about partitions. The number of k-partitions is given by

a quantity called Stirling number of the second kind, denoted

{
n
k

}
and read “n subset k”

(Graham, Knuth, and Patashnik 1994). It is not di�cult to see that

{
n
1

}
=

{
n
n

}
= 1 whenever

n ≥ 1. Moreover,

{
n
2

}
= 2

n−1 − 1, as a 2-partition is uniquely determined by the block

that does not contain the nth element, and this block needs to be nonempty. In general,

Stirling numbers of the second kind satisfy the following recurrence:{
n

k

}
=

{
n − 1

k − 1

}
+ k

{
n − 1

k

}
. (4.1)

Combinatorially, we can partition n elements into k blocks by partitioning the �rst n − 1

elements into k − 1 blocks and adding a singleton block consisting of the nth element, or

by partitioning the �rst n − 1 elements into k blocks and placing the nth element into one

of these blocks in k ways.

27

28 CHAPTER 4. TESTING WITH RANDOM PARTITIONS

Lemma 4.1. For every n ≥ 1 and k such that 1 ≤ k ≤ n, we have{
n

k

}
k! ≤ kn .

Proof. The quantity on the right-hand side is the number of all functions from an n-

element set to a k-element set, while the quantity on the left-hand side is the number of

such functions that are surjective. To see this, note that a surjection induces a k-partition

of the domain, and the induced blocks map to the codomain in one of k! ways. �

For a �xed k ,

{
n
k

}
asymptotically approaches kn/k!. Intuitively, if we randomly assign n

elements into k buckets and n is large, it is unlikely one of the buckets will be empty.

Therefore, the di�erence between the left-hand side and right-hand side in Lemma 4.1

will be small.

4.2 Splitting Families
We formalize the notion of k-splitting from Section 2.5 using k-splitting families.

De�nition 4.1. Given k , let P be a k-partition of U and let S = {x1, . . . ,xk } ⊆ U . We say

P splits S if P = {B1, . . . ,Bk } and x1 ∈ B1, . . . ,xk ∈ Bk . We say a family F of k-partitions

is a k-splitting family if for every subset S ⊆ U there is a partition in F that splits S .

Splitting families are an instance of the covering families from Section 3.1: a testing goal

here is a subset ofU of size k , a test is a partition ofU with k blocks, and a covering family

is a k-splitting family. Let the k-partitions be uniformly distributed. We shall invoke

Theorem 3.1 to obtain a bound on the size of splitting families, but in order to do so, we

need to derive a lower bound on the probability that a random k-partition splits a �xed

set of k elements. As the following theorem shows, this probability can be bounded from

below by a constant that depends only on k .

Theorem 4.2. Let S ⊆ U be a set of k elements, and let p be the probability that a random
k-partition splits S . Then p = kn−k/

{
n
k

}
≥ k−kk!.

Proof. A k-partition that splits S is uniquely determined by a map U \ S → S that maps

x ∈ U \ S to y ∈ S if x and y are in the same block of the partition. Hence, the probability

that a random k-partition splits S is p = kn−k/
{
n
k

}
. From Lemma 4.1 it follows that

p ≥ k−kk!. �

The bound on the size of splitting families is now a corollary of Theorem 3.1.

4.2. SPLITTING FAMILIES 29

Corollary 4.3. Let ϵ > 0 and let F be a family of k-partitions chosen independently and
uniformly at random such that |F | ≥ kk+1(k!)−1

logn + kk (k!)−1
log ϵ−1. Then F is k-

splitting with probability at least 1 − ϵ . Moreover, there exists a k-splitting family of size⌈
kk+1(k!)−1

logn
⌉
.

Proof. By Theorem 4.2, a �xed subset of U of size k is split by a random k-partition with

probability p ≥ k−kk!. Moreover, the number of subsets of U of size k is m =
(
n
k

)
≤ nk .

Therefore, |F | ≥ p−1(logm + log ϵ−1), and the result follows from Theorem 3.1. �

In the experiments done by Jepsen, the most common case is to split the network into

two blocks, that is, k = 2. In this case we can derive a more precise bound.

Corollary 4.4. Let ϵ > 0 and let F be a family of 2-partitions chosen independently and
uniformly at random such that |F | ≥ 2 log

2
n + log

2
ϵ−1 − 1. Then F is 2-splitting with

probability at least 1 − ϵ . Moreover, there exists a 2-splitting family of size
⌈
2 log

2
n − 1

⌉
.

Proof. We get this slightly more precise bound by performing a more precise version of

the analysis from the proof of Theorem 3.1. Like there, we can bound the probability

that F is not 2-splitting bym(1 − p) |F | , withm =
(
n
2

)
and p = 2

n−2/
{
n
2

}
. However, since{

n
2

}
= 2

n−1 − 1, we have 1 − p < 1/2 whenever n ≥ 2. Hence, m(1 − p) |F | < m2
−|F |

. On

the other hand, since m =
(
n
2

)
≤ n2/2, we have |F | ≥ 2 log

2
n − log

2
ϵ − 1 ≥ log

2
(m/ϵ).

Hence,m(1 − p)−|F | < m2
−|F | ≤ ϵ . �

Remark 1. Note that there is a deterministic construction of a 2-splitting family of size

blog
2
nc + 1. To see this, take the binary representation of the elements in the universe.

For each position i ∈ {0, . . . , blog
2
nc}, consider the partition obtained by separating all

elements which have a 0 in the ith position from all elements which have a 1 in the ith
position. Clearly, this set of blog

2
nc + 1 partitions forms a 2-splitting family. Thus, the

probabilistic construction in Corollary 4.4 is sub-optimal. �

Corollary 4.3 suggests that we can get k-splitting families with high probability by gener-

ating su�ciently many (logarithmically in n) k-partitions uniformly at random. But how

do we generate a k-partition uniformly at random? We can do it recursively using the

basic recurrence for Stirling numbers (4.1). The base cases are k = 1 (we generate a single

block containing n elements) and k = n (we generate n singleton blocks). Otherwise we

choose between partitioning the �rst n − 1 elements recursively into k − 1 or k blocks

with the following respective probabilities:{
n − 1

k − 1

}/{n
k

}
and k

{
n − 1

k

}/{n
k

}
. (4.2)

30 CHAPTER 4. TESTING WITH RANDOM PARTITIONS

In the former case we add to the k − 1 blocks a singleton block consisting of the nth

element, and in the latter case we place the nth element into one of the k blocks uniformly

at random.

It is not di�cult to see that the described procedure indeed gives us k-partitions

uniformly at random. However, the intermediate probabilities (4.2) involve computing

Stirling numbers, which grow exponentially in n. Fortunately, there is a way around this

obstacle. Note that we can split every k-element subset of U by at least one balanced
k-partition. Recall that the blocks of a balanced partition di�er in size at most by 1.

Because of this, it is much easier to generate balanced partitions uniformly at random: we

generate a random permutation of the set U and split it into k balanced blocks. Moreover,

from the standpoint of lower bound on the splitting probability, we are no worse using

balanced partitions instead of arbitrary partitions, as the following theorem shows.

Theorem 4.5. Let S ⊆ U be a set of k elements, let p be the probability that a random
k-partition splits S , and let pb be the probability that a random balanced k-partition splits S .
Then pb ≥ p.

In order to prove Theorem 4.5, we need an auxiliary combinatorial lemma of independent

interest.
1

Lemma 4.6. Let n,k ∈ N, and letm = n mod k . Then,

kn−k
(
n

k

)
≤

⌈n
k

⌉m ⌊n
k

⌋k−m{
n

k

}
.

Proof. Let M be a binary matrix whose rows are indexed by k-partitions and columns by

subsets ofU of size k , and such that an entry corresponding to partition P and set S is 1 if

and only if P splits S . We count the number of ones in the matrix in two di�erent ways.

The number of ones in a column indexed by set S is the number of k-partitions that

split S . As argued in the proof of Theorem 4.2, this number is kn−k . Hence the total

number of ones in M is kn−k
(
n
k

)
. On the other hand, the number of ones in a row indexed

by partition P = {B1, . . . ,Bk } is the number of sets split by P . It is not di�cult to see this

number is |B1 | · · · |Bk |. Summing over all k-partitions, we get

kn−k
(
n

k

)
=

∑
P={B1,...,Bk }

|B1 | · · · |Bk | (4.3)

1
Independently of the author, a weaker variant of Lemma 4.6 was posted as Problem 11957 in the

February 2017 issue of the American Mathematical Monthly (Edgar, Ullman, and D. B. West 2017). The

proof given here solves the problem.

4.2. SPLITTING FAMILIES 31

Note that the product B = |B1 | · · · |Bk | attains its maximal value for a balanced partition.

For suppose the partition is not balanced; then there are blocks Bi and Bj such that

|Bi | − |Bj | ≥ 2. From these we obtain blocks B′i and B′j by moving an arbitrary element

from Bi to Bj . Let B′ = B/(|Bi | |Bj |); for the new product we have:

B′|B′i | |B
′
j | = B′(|Bi | − 1) (|Bj | + 1)

= B′(|Bi | |Bj | + |Bi | − |Bj | − 1)

> B′|Bi | |Bj |

= B

We have thus increased the value of the product.

It is not di�cult to see that a balanced partition has m blocks of size dn/ke and

k − m blocks of size bn/kc. Hence the maximal value of the product |B1 | · · · |Bk | is

dn/kem bn/kck−m. With this we can bound the sum in (4.3) and complete the proof:∑
P={B1,...,Bk }

|B1 | · · · |Bk | ≤
⌈n
k

⌉m ⌊n
k

⌋k−m{
n

k

}
�

Proof of Theorem 4.5. We already know that p = kn−k/
{
n
k

}
. To calculate pb , we need to

calculate the number NS of balanced k-partitions that split S , and the number N of all

balanced k-partitions; then pb = NS/N .

Letm = n mod k . As noted earlier, a balanced k-partition hasm blocks of size dn/ke
and k −m blocks of size bn/kc. In order to uniquely determine a balanced k-partition that

splits S , we �rst choosem elements of S that are placed in larger blocks, and then for each

element of S we choose a completion of its block from U \ S . Thus,

NS =

(
k

m

) (
n − k

dn/ke − 1, . . . , dn/ke − 1︸ ︷︷ ︸
m times

, bn/kc − 1, . . . , bn/kc − 1︸ ︷︷ ︸
k−m times

)
.

Similarly, in order to uniquely determine a balanced k-partition, we choosem blocks of

size dn/ke and k −m blocks of size bn/kc, and account for the fact that neither the order

of larger nor the order of smaller blocks matters. Thus,

N =
1

m!(k −m)!

(
n

dn/ke, . . . , dn/ke︸ ︷︷ ︸
m times

, bn/kc, . . . , bn/kc︸ ︷︷ ︸
k−m times

)
.

32 CHAPTER 4. TESTING WITH RANDOM PARTITIONS

After expanding the multinomial coe�cients and rearranging the terms, we get

pb =
⌈n
k

⌉m ⌊n
k

⌋k−m/ (n
k

)
.

Hence, the inequality pb ≥ p is precisely the inequality in Lemma 4.6. �

Example 4.1. Let us get back to the Chronos example from Chapter 2. In order to expose

the bug, we had to split the Chronos leader from the Zookeeper leader in the set of �ve

nodes. Corollary 4.4 tells us it is possible to do this with just 4 randomly generated

partitions. Moreover, by generating just 2 additional partitions, we ensure the probability

of the split is at least 80%. The optimal 2-splitting family in this case contains 3 partitions,

and can be constructed explicitly (not randomly!) by the construction in Remark 1. �

Historical note. Splitting families appear in the context of perfect hashing (Yao 1981;

Fredman, Komlós, and Szemerédi 1984; Czech, Havas, and Majewski 1997). Andrew

Chi-Chih Yao calls them k-separating systems and gives an explicit construction of such

systems of size 4
k2

(log
2
n)k−1

(Yao 1981). He also references personal communication with

Ronald Graham for a probabilistic construction of size ek
√
k logn. Another reference to

personal communication with Ronald Graham appears in Fredman, Komlós, and Szemerédi

(1984). It is very likely that Graham’s construction is similar to the one given here.

4.3 Separating Families
We now turn to the notion of k, l-separation from Section 2.5, formalized using k, l-
separating families. In this section we �x two positive integers k, l such that k + l ≤ n.

De�nition 4.2. Let F be a family of 2-partitions. We call F a k, l-separating family if

for every pair of disjoint sets S = {x1, . . . ,xk } ⊆ U and T = {y1, . . . ,yl } ⊆ U there is a

partition P = {X ,Y } ∈ F such that S ⊆ X and T ⊆ Y .

Like splitting families, separating families are also an instance of covering families from

Section 3.1. A testing goal here is a pair (S,T) of disjoint sets S,T ⊆ U such that |S | = k
and |T | = l . A test is a partition of U with two blocks, and a covering family is a k, l-
separating family. Here we can also bound the probability that a random 2-partition

separates two �xed sets of size k and l , and the bound depends only on k and l .

Theorem 4.7. Let S,T ⊆ U be sets of k and l elements, and let p be the probability that a
random 2-partition separates S and T . Then p = 2

n−k−l/
{
n
2

}
≥ 2

1−k−l .

4.4. MINORITY ISOLATING FAMILIES 33

Proof. A 2-partition that separates S andT is uniquely determined by a mapU \ (S ∪T) →
{0, 1} that maps x ∈ U \ (S ∪ T) to 1 if and only if x is in the block of the partition

that contains S . Hence, the probability that a random 2-partition separates S and T is

p = 2
n−k−l/

{
n
2

}
. From the fact that

{
n
2

}
= 2

n−1 − 1 it follows that p ≥ 2
1−k−l

. �

With the obtained lower bound, we can invoke Theorem 3.1 to obtain a bound on the size

of separating families.

Corollary 4.8. Let ϵ > 0 and let F be a family of 2-partitions chosen independently and
uniformly at random such that |F | ≥ 2

k+l−1(k + l) logn + 2
k+l−1

log ϵ−1. Then F is k, l-
separating with probability at least 1 − ϵ . Moreover, there exists a k, l-separating family of
size

⌈
2
k+l−1(k + l) logn

⌉
.

Proof. By Theorem 4.7, the probability that a random 2-partition separates two subsets

S,T ⊆ U of size k and l is p ≥ 2
1−k−l

. Moreover, the number of pairs of subsets (S,T) of

size k and l ism =
(
n
k

) (
n−k
l

)
≤ nk+l . Therefore, |F | ≥ p−1(logm + log ϵ−1), and the result

follows from Theorem 3.1. �

Example 4.2. Let us get back to the Kafka example from Chapter 2. By plugging k = l = 2

and n = 4 into Corollary 4.8, we see that we can separate node a and the Zookeeper node

from nodes b and c with approximately 45 randomly generated partitions. We can get a

more precise bound by using Theorem 3.1 directly with p = 1/8 andm =
(

4

2,2

)
= 6; this

tells us separation is possible with 15 randomly generated partitions.

Of course, the separation of node a and the Zookeeper node from nodes b and c does

not expose the inconsistency on its own—we need two consecutive partitions, one being

2, 2-separating, and another being 1, 3-separating. Suppose we alternate partitions with

blocks of size 2 and 2 (�rst phase), and partitions with blocks of size 1 and 3 (second phase).

Fix a pair of nodes (x ,y)—x representing the Zookeeper node, and y representing node a.

The probability of x and y ending up in the same block in the �rst phase is 1/3, and the

probability of y being isolated in the second phase is 1/4, giving an overall probability of

1/12. The number of pairs (x ,y) in a set of four nodes is 12. Thus by invoking Theorem 3.1

directly, we get that we can expose the inconsistency with 30 alternations of the two

phases, and we can expose it with probability at least 80% with 50 alternations. �

4.4 Minority Isolating Families

The next notion to analyze is the one of minority isolation. We formalize it using minority

isolating families.

34 CHAPTER 4. TESTING WITH RANDOM PARTITIONS

De�nition 4.3. Let F be a family of 2-partitions. We call F a minority isolating family
if for every x ∈ U there is a partition P = {X ,Y } ∈ F such that x ∈ X and |X | < |Y |.

The analysis of minority isolating families depends on whether n is odd or even. The two

cases di�er slightly because if n is odd, there is a smaller block in every 2-partition, while

if n is even, we can split the set into two blocks of equal size. We �rst analyze the case

when n is odd.

Denote by p the probability that a random 2-partition isolates a �xed element x in the

smaller (minority) block. By summing over the size of the block containing x , we get:

p =
∑

0≤j<bn/2c

(
n − 1

j

) /{n
2

}
1 − p =

∑
bn/2c≤j<n−1

(
n − 1

j

) /{n
2

}
=

∑
0<j≤bn/2c

(
n − 1

j

) /{n
2

}
Subtracting the �rst equality from the second one gives us:

1 − 2p =

((
n − 1

bn/2c

)
− 1

) /{n
2

}
.

By solving for p and using

{
n
2

}
= 2

n−1 − 1, we get:

p =

(
2
n−1 −

(
n − 1

bn/2c

)) /
(2n − 2) .

Lemma 4.9. If n is odd and n ≥ 3, then p ≥ 1/3.

Proof. We show equivalently that 1− 2p ≤ 1/3, which is equivalent to showing 3

(
n−1

bn/2c

)
≤

2
n−1 + 2. We show the latter inequality by induction on n.

If n = 3, it is easy to check that the inequality holds. Assume inductively that the

inequality holds for an odd n ≥ 3; then for n + 2 we have:

3

(
n + 1

b(n + 2)/2c

)
= 3 ·

4n

n + 1

(
n − 1

bn/2c

)
≤

4n

n + 1

(2n−1 + 2) ≤ 2
n+1 + 2 .

The last inequality boils down to 3n ≤ 2
n + 1, which holds for every odd n. �

As before, we use the obtained lower bound on p to establish the bound on the size of

minority isolating families as a corollary to Theorem 3.1.

4.4. MINORITY ISOLATING FAMILIES 35

Corollary 4.10. Let n be odd and n ≥ 3, let ϵ > 0 and let F be a family of 2-partitions
chosen independently and uniformly at random such that |F | ≥ 3(logn + log ϵ−1). Then
F is a minority isolating family with probability at least 1 − ϵ . Moreover, for an odd n ≥ 3

there exists a minority isolating family of size d3 logne.

Proof. From Lemma 4.9, the probabilityp that a random 2-partition isolates a �xed element

in the minority block satis�es p ≥ 1/3. Moreover, in this case the testing goals are simply

the elements of U , som = n. The result then follows from Theorem 3.1. �

In the case of minority isolation with an odd n, balanced 2-partitions not only give us nicer

random sampling, but improve the asymptotic bound on the size of minority isolating

families.

Corollary 4.11. Let n be odd and n ≥ 3, let ϵ > 0 and let F be a family of balanced
2-partitions chosen independently and uniformly at random such that |F | ≥ 2(1 + 1/(n −
1)) (logn + log ϵ−1). Then F is a minority isolating family with probability at least 1 − ϵ .
Moreover, for an odd n ≥ 3 there exists a minority isolating family of size d2(1 + 1/(n −
1)) logne.

Proof. The probability that a random balanced 2-partition isolates a �xed element in the

minority block is

pb =

(
n − 1

dn/2e

) / (n

dn/2e

)
=
bn/2c

n
=
n − 1

2n
.

Again, in this case the testing goals are the elements ofU , som = n and the result follows

from Theorem 3.1. �

For completeness, let us now do the analysis with an evenn. In this case, for the probability

p that a random 2-partition isolates a �xed element in the smaller (minority) block we

have:

p =
∑

0≤j<n/2−1

(
n − 1

j

) /{n
2

}
1 − p =

∑
n/2−1≤j<n−1

(
n − 1

j

) /{n
2

}
=

∑
0<j≤n/2

(
n − 1

j

) /{n
2

}

Subtracting the �rst equality from the second one gives us:

1 − 2p =

((
n − 1

n/2 − 1

)
+

(
n − 1

n/2

)
− 1

) /{n
2

}
.

36 CHAPTER 4. TESTING WITH RANDOM PARTITIONS

By solving for p, using

{
n
2

}
= 2

n−1 − 1, and noting that the two binomial coe�cients in

the expression are equal, the equality simpli�es to:

p =

(
2
n−2 −

(
n − 1

n/2

)) /
(2n−1 − 1) .

Lemma 4.12. If n is even and n ≥ 4, then p ≥ 1/7.

Proof. We show equivalently that 1−2p ≤ 5/7, which is equivalent to 7

(
n−1

n/2

)
≤ 5 · 2n−2+1.

We show the latter inequality by induction on n.

If n = 4, it is easy to check that the inequality holds. Assume inductively that the

inequality holds for an even n ≥ 4; then for n + 2 we have:

7

(
n + 1

(n + 2)/2

)
= 7 ·

4(n + 1)

n + 2

(
n − 1

n/2

)
≤

4(n + 1)

n + 2

(5 · 2n−2 + 1) ≤ 5 · 2n + 1 .

The last inequality boils down to 3n + 2 ≤ 5 · 2n, which holds for all n. �

Corollary 4.13. Let n be even and n ≥ 4, let ϵ > 0 and let F be a family of 2-partitions
chosen independently and uniformly at random such that |F | ≥ 7(logn + log ϵ−1). Then F
is a minority isolating family with probability at least 1 − ϵ . Moreover, for an even n ≥ 4,
there exists a minority isolating family of size d7 logne.

Proof. From Lemma 4.12, the probability p that a random 2-partition isolates a �xed

element in the minority block satis�es p ≥ 1/7. Moreover, in this case the testing goals

are the elements of U , som = n. The result then follows from Theorem 3.1. �

When n is even, balanced 2-partitions have two blocks of equal size, so we cannot use

them for minority isolation. Instead, we use 2-partitions with the smaller block of size

n/2 − 1 and the larger block of size n/2 + 1—we call these semibalanced partitions.

Corollary 4.14. Let n be even and n ≥ 4, let ϵ > 0 and let F be a family of semibalanced
2-partitions chosen independently and uniformly at random such that |F | ≥ 2(1 + 2/(n −
2)) (logn + log ϵ−1). Then F is a minority isolating family with probability at least 1 − ϵ .
Moreover, for an even n ≥ 4, there exists a minority isolating family of size d2(1 + 2/(n −
2)) logne.

Proof. The probability that a random semibalanced 2-partition isolates a �xed element in

the minority block is

pb =

(
n − 1

n/2 + 1

) / (n

n/2 + 1

)
=
n/2 − 1

n
=
n − 2

2n
.

4.4. MINORITY ISOLATING FAMILIES 37

Again, in this case the testing goals are the elements ofU , som = n and the result follows

from Theorem 3.1. �

Example 4.3. Minority isolation was motivated by the etcd example from Chapter 2. The

number of nodes in the Jepsen test for etcd was 5; hence according to Corollary 4.11, with

9 randomly generated balanced partitions we will have isolated the leader in the minority

block with probability at least 86%.

As in the Kafka example, the isolation here does not expose the inconsistent behavior

on its own. We need to also consider read and write operations. As in Example 3.1, assume

we only have three operations—read, write 0, and write 1—and each operation can be

directed to any of the �ve nodes. Thus, in total we have 15 operations, each occurring

with equal probability.

To expose the inconsistency in Fig. 2.1 (right), the partition �rst needs to isolate the

leader in the minority block, which happens with probability 2/5. As in Example 3.1, this

needs to be followed up with a write in the larger block, and read in the smaller block,

which happens with probability (2/15) · (3/15) = 2/75. Thus, the overall probability of

covering a �xed goal is 4/375. Since there are �ve goals (any node could be the leader),

full coverage is possible with approximately 150 tests, and approximately 302 tests will

ensure full coverage with probability at least 80%. �

38 CHAPTER 4. TESTING WITH RANDOM PARTITIONS

Chapter 5

Testing with Hitting Families

In this chapter, we study the notion ofd-hitting coverage, introduced informally in Chapter

2. The corresponding covering families are called d-hitting families in this context.

5.1 Hitting Families of Schedules
We �rst recall the standard terminology of partial orders, and then proceed to de�ne

schedules (linearizations of these partial orders) and hitting families of schedules.

5.1.1 Preliminaries: Partial Orders
A partial order (also known as a partially ordered set, or a poset) is a pair (P, ≤) where P

is a �nite set
1

and ≤ is a binary relation on P that is:

1. re�exive: x ≤ x for all x ∈ P,

2. antisymmetric: x ≤ y and y ≤ x imply x = y for all x ,y ∈ P,

3. transitive: x ≤ y and y ≤ z imply x ≤ z for all x ,y, z ∈ P.

One typically uses P to refer to (P, ≤). The size of P is the number of elements in it, |P |.

The relation x ≤ y is also written as x ≤P y and as y ≥ x . Elements x and y are

comparable i� x ≤ y or y ≤ x . Otherwise they are incomparable, which is written as x ‖ y.

One writes x < y i� x ≤ y and x , y; if x < y, we say the element x is a predecessor of

y, and y is a successor of x . Furthermore, x is an immediate predecessor of y (and y is an

immediate successor of x) if x < y but there is no z ∈ P such that x < z < y. The Hasse

1
In general, partial orders do not have to be �nite, but in this thesis we only study �nite partial orders.

39

40 CHAPTER 5. TESTING WITH HITTING FAMILIES

diagram of a partial order P is a directed graph where the set of vertices is P and an edge

(x ,y) exists if and only if x is an immediate predecessor of y. Partial orders are sometimes

identi�ed with their Hasse diagrams.

For a partial order (P, ≤), an element x ∈ P is said to be minimal if no other element

is smaller than x , that is, for any y ∈ P, y ≤ x implies y = x . Analogously, x is maximal
if no other element is greater than x , that is, for any y ∈ P, y ≥ x implies y = x . We write

minP and maxP for the set of minimal and maximal elements of P, respectively.

Partial orders (P1, ≤1) and (P2, ≤2) are disjoint if P1 ∩P2 = ∅; the parallel composition
(or disjoint union) of such partial orders is the partial order (P, ≤) where P = P1 ∪P2 and

x ≤ y i� x ,y ∈ Pk for some k ∈ {1, 2} and x ≤k y. In this partial order, which we denote

by P1 ‖ P2, any two elements not coming from a single Pk are incomparable: x1 ∈ P1

and x2 ∈ P2 imply x1 ‖ x2.
2

For a partial order (P, ≤) and a subset Q ⊆ P, the restriction of (P, ≤) to Q is the

partial order (Q, ≤Q) in which, for all x ,y ∈ Q, x ≤Q y if and only if x ≤ y. Instead of ≤Q
one usually writes ≤, thus denoting the restriction by (Q, ≤). We also say that the partial

order P is an extension of the partial order Q and that P contains Q. Note that P \ Q is

a restriction of P. We say that Q is a pre�x of P if Q ⊆ P and Q is downward closed:

for every x ∈ Q and y ∈ P, if y ≤ x , then y ∈ Q. In general, partial orders (P1, ≤1) and

(P2, ≤2) are isomorphic i� there exists an isomorphism f : P1 → P2: a bijective mapping

that respects the ordering, i.e., with x ≤1 y i� f (x) ≤2 f (y) for all x ,y ∈ P1. Containment

of partial orders is usually understood up to isomorphism.

5.1.2 Schedules and Their Families

A partial order is linear (or total) if all its elements are pairwise comparable. A linearization

(linear extension) of the partial order (P, ≤) is a partial order of the form (P, ≤′) that is

linear and has ≤′ which is a superset of ≤. We call linearizations (linear extensions) of P

schedules. In other words, a schedule α is a permutation of the elements of P that respects
P, i.e., respects all constraints of the form x ≤ y from P: for all pairs x ,y ∈ P, whenever

x ≤P y, it also holds that x ≤α y. We denote the set of all possible schedules by S (P); a

family of schedules for P is simply a subset of S (P).
In what follows, we often treat schedules as words and families of schedules as

languages. Indeed, let P have n elements {v1, . . . ,vn}, then any schedule α can be viewed

as a word of length n over the alphabet {v1, . . . ,vn} where each letter occurs exactly once.

We say that α schedules elements in the order of occurrences of letters in the word that

2
Note that we are using the same symbol to denote the parallel composition P ‖ Q of partial orders P

and Q, and the statement x ‖ y that the elements x and y are incomparable. The meaning will be clear from

the context.

5.1. HITTING FAMILIES OF SCHEDULES 41

a1 a2

· · ·
an

b1 b2

· · ·

bn

Figure 5.1: The standard example Sn with 2n elements

represents it.

Suppose α1 and α2 are schedules for disjoint partial orders P1 and P2; then α1 · α2

is a schedule for the partial order P1 ‖ P2 that �rst schedules all elements from P1

according to α1 and then all elements from P2 according to α2. Note that we will use the

· to concatenate schedules (as well as individual elements); since some of our partially

ordered sets will contain strings, concatenation “inside” an element will be denoted simply

by juxtaposition.

5.1.3 Admissible Tuples and Hitting Families

Fix a partial order P and let a = (a1, . . . ,ad) be a tuple of d ≥ 2 distinct elements of P; we

call such tuples d-tuples. Suppose α is a schedule for P; then the schedule α hits the tuple

a if the restriction of α to the set {a1, . . . ,ad } is the sequence a1 · . . . · ad . Note that for a

tuple a to have a schedule that hits a, it is necessary and su�cient that a respects P; this

condition is equivalent to the condition that ai ≤ aj or ai ‖ aj whenever 1 ≤ i ≤ j ≤ d .

We call d-tuples satisfying this condition admissible.

De�nition 5.1 (d-hitting family). A family of schedules F for P is d-hitting if for every

admissible d-tuple a there is a schedule α ∈ F that hits a.

Hitting families are yet another instance of covering families from Chapter 3: given a

partial order P, the tests here are all schedules for P, the testing goals are all admissible

d-tuples, and a schedule α covers a d-tuple a if α hits a. However, unlike in Chapter 4

where most of the results were obtained by invoking the general construction of Theorem

3.1, here we will need more involved constructions to get small hitting families. Indeed,

since there are at most

(
n
d

)
d! ≤ nd admissible d-tuples, if there existed a lower bound

p > 0 on the probability of hitting a �xed d-tuple depending only on d , Theorem 3.1

would give us an upper bound on the size of a d-hitting family of the form O (f (d) logn).
Unfortunately, as the next example shows, there is a partial order with 2n elements whose

smallest 2-hitting family contains n schedules.

42 CHAPTER 5. TESTING WITH HITTING FAMILIES

Example 5.1 (standard example). Consider a partial order Sn, known as the standard
example (Dushnik and Miller 1941; Trotter 2001), whose Hasse diagram is shown in

Figure 5.1. The partial order consists of 2n elements a1, . . . ,an,b1, . . . ,bn and the ordering

constraints ai < bj if and only if i , j. Note that for every i , the elements ai and bi
are incomparable; hence the pair (bi ,ai) is admissible. Any schedule that hits (bi ,ai)
necessarily schedules aj before bi and ai before bj for all j , i . Thus, such a schedule does

not hit any other pair (bj ,aj) for j , i . In other words, we need at least n schedules to hit

the pairs (bi ,ai) for 1 ≤ i ≤ n. It is not di�cult to see that with n schedules we can hit

all other admissible pairs; therefore, Sn has a 2-hitting family of size n, and this 2-hitting

family is optimal. �

For d = 2, the size of the smallest 2-hitting family is known as the dimension of the partial

order (Dushnik and Miller 1941; Trotter 2001). Example 5.1 shows a partial order with

O (n) elements of dimension n. Computing and even approximating the dimension for

general partial orders are known to be hard problems (Yannakakis 1982; Hegde and Jain

2007; Chalermsook, Laekhanukit, and Nanongkai 2013), and the hardness results directly

translate to computing and approximating the size of the optimal d-hitting families for

d ≥ 3.

As we have noticed earlier, a partial order with n elements has at most

(
n
d

)
d! ≤ nd

admissible d-tuples, which gives an upper bound of O (nd) on the size of the optimal

d-hitting family. As it turns out, there are two simple constructions that slightly improve

this bound: one for general partial orders, and one for partial orders of dimension 2.

Proposition 5.1. For any d ≥ 2, a partial order P with n elements has a d-hitting family
of size O (nd−1).

Proof. Group all admissible d-tuples a = (a1, . . . ,ad) into sets that agree on a1, . . . ,ad−1.

For each set, construct a scheduleα = α (a1, . . . ,ad−1) as follows. First schedulea1, . . . ,ad−1:

that is, start with an empty sequence of elements, iterate over k = 1, . . . ,d − 1, and, for

each k , append to the sequence all elements x ∈ P such that x ≤ ak . The order in

which these xes are appended is not important as long as it respects the partial order

P. Elements that are predecessors of several ak are only scheduled once, for the least

k . Note that no ak , 1 ≤ k ≤ d , is a predecessor of any aj for j < k , because otherwise

the d-tuple a = (a1, . . . ,ad) would not be admissible. After the elements a1, . . . ,ad−1 and

their predecessors have been scheduled, schedule the remaining elements in any order

that respects P. By construction, α hits all admissible d-tuples that agree on a1, . . . ,ad−1;

collecting all such schedules for all possible a1, . . . ,ad−1 makes a d-hitting family for P of

size at most nd−1
. �

If the partial order is additionally of dimension 2, we can do even better, as the next

proposition shows.

5.2. SPECIFIC PARTIAL ORDERS 43

Proposition 5.2. For any d ≥ 2, a partial order P of dimension 2 with n elements has a
d-hitting family of size O (nd−2).

Proof. Let the two schedules that hit all admissible pairs be λ and ρ. Similarly as in

the proof of Proposition 5.1, we group all admissible d-tuples a = (a1, . . . ,ad) into sets

agreeing on a1, . . . ,ad−2. Instead of a single schedule per set, here we construct a pair

of schedules λ′ = λ(a1, . . . ,ad−2) and ρ′ = ρ (a1, . . . ,ad−2). In both λ′ and ρ′, we �rst

schedule a1, . . . ,ad−2 as before: start with an empty sequence of elements, iterate over

k = 1, . . . ,d − 2, and, for each k , append to the sequence all previously unscheduled

elements x ∈ P such that x ≤ ak . After the elements a1, . . . ,ad−2 and their predecessors

have been scheduled, the remaining elements are scheduled in λ′ according to λ and in ρ′

according to ρ. As a result, these two schedules hit all admissible d-tuples that agree on

a1, . . . ,ad−2; collecting all such schedules for all possible a1, . . . ,ad−2 makes a d-hitting

family for P of size at most 2nd−2
. �

In the rest of the chapter we focus on speci�c partial orders for which we can show

existence of small d-hitting families. We shall return to general partial orders in Chapter

6.

5.2 Speci�c Partial Orders
The speci�c partial orders we shall inspect are chains and antichains, series-parallel partial

orders, and trees. We study chains and antichains primarily for theoretical reasons: they

are contained in other partial orders, so any lower bounds we show for them automatically

translate to other partial orders. On the other hand, while trees and series-parallel orders

are also interesting from the theoretical standpoint, they arise in practice as execution

models of concurrent programs with asynchronous task creation and fork-join constructs.

Of all the speci�c partial orders we have mentioned, series-parallel orders are the

most general: they subsume chains, antichains, and trees. Their main property is that

their dimension is two; we shall exploit this in Section 5.3 to construct near-optimal

3-hitting families for series-parallel orders. In Section 5.4 we give a general construction

of d-hitting families for trees.

5.2.1 Chains and Antichains
A partial order is a chain if it is linear, that is, if any two elements are comparable. On the

other hand, an antichain is a partial order where every two elements are incomparable.

For a partial order P, its height (sometimes called length) is the maximal cardinality of a

chain it contains, and its width is the maximal cardinality of an antichain it contains.

44 CHAPTER 5. TESTING WITH HITTING FAMILIES

Chain

Consider a chain of n elements: Cn = {1, . . . ,n} with 1 < 2 < . . . < n. This partial

order has a unique schedule: α = 1 · 2 · . . . · n; a d-tuple a = (a1, . . . ,ad) is admissible

i� a1 < . . . < ad , and α hits all such d-tuples. Thus, for any d , the family F = {α } is a

d-hitting family for Cn.

Chain With Independent Element

Consider Cn ‖ {†}, the parallel composition of a chain Cn and a singleton {†}. There are

n + 1 possible schedules, depending on how † is positioned with respect to the chain:

α0 = † · 1 · 2 · . . . ·n, α1 = 1 · † · 2 · . . . ·n, . . . , αn = 1 · 2 · . . . ·n · †. For d = 2, admissible pairs

are of the form (i, j) with i < j, (†, i), and (i, †) for all 1 ≤ i ≤ n; the family F2 = {α0,αn}
is the smallest 2-hitting family. Now consider d = 3. Note that all triples (i, †, i + 1) with

1 ≤ i < n, as well as (†, 1, 2) and (n − 1,n, †), are admissible, and each of them is hit by a

unique schedule. Therefore, the smallest 3-hitting family of schedules consists of all n + 1

schedules: F3 = {α0, . . . ,αn}. For d ≥ 4, it remains to observe that every d-hitting family

is necessarily d′-hitting for 2 ≤ d′ ≤ d , hence F3 is optimal for all d ≥ 3.

The following proposition is an important consequence of the analysis we have just

made.

Proposition 5.3. For any d ≥ 3 and any partial order P, every d-hitting family must
contain at least m + 1 schedules, where m denotes the maximum number n such that P
contains Cn ‖ {†}. Thism is upper-bounded (and this upper bound is tight) by the height of
P. �

Antichain

Let An = {e1} ‖ {e2} ‖ . . . ‖ {en} be an antichain with n elements. In Example 3.3, we

have already derived an upper bound on the size of optimal d-hitting families for An.

In particular, there exists a d-hitting family of size d!(1 + log(nd − (n − d)d)), which is

asymptotic to d!(d − 1) logn. Note that this bound is suboptimal for d = 2. Consider a

family F = {λ, ρ}, where λ = e1 · e2 · . . . · en and ρ = en · en−1 · . . . · e1. It is not di�cult to

see that F is a 2-hitting family for An with only 2 schedules. This also shows that the

dimension of An is two.

As for d ≥ 3, we show that the upper bound from Example 3.2 is optimal up to a

constant factor. More precisely, we have the following theorem.

Theorem 5.4. For any d ≥ 3, the smallest d-hitting family for An has size between
д(d) logn−O (1) and f (d) logn+O (1), whereд(d) ≥ d/(2 log(2d+2)) and f (d) ≤ d!(d−1).

5.2. SPECIFIC PARTIAL ORDERS 45

Proof. It remains to show the lower bound, that is, that any d-hitting family for An

contains at least д(d) logn −O (1) schedules, where д(d) ≥ d/(2 log(2d + 2)). To see this,

denote r = b(d − 1)/2c ≥ 1 and observe that 2r + 1 ≤ d . Take any d-hitting family

F = {α1, . . . ,αk } and consider the following matrix B = (bij) of size k × (n − 1)r (recall,

(n − 1)r = (n − 1) (n − 2) · · · (n − r) is the falling factorial power). The columns of B are

indexed by all r -tuples of distinct elements from {e1, . . . , en−1}, of which there are exactly

(n− 1)r . Let (a1, . . . ,ar) be the jth such tuple; then the entry bij is the number of elements

from {a1, . . . ,ar } that the schedule αi places before en.

We claim that all columns of B are pairwise distinct. Indeed, if for some j′ , j′′ and all

i it holds that bij ′ = bij ′′ , then, for all s ∈ {0, . . . , r }, no schedule from F can place exactly

s elements from the j′th tuple before en without also placing exactly s elements from the

j′′th tuple before en, and vice versa. Since the j′th and j′′th r -tuples—call them a′ and

a′′—are di�erent, this implies that F cannot be d-hitting. Indeed, in the case where a′ and

a′′ have no elements in common, this is obvious: consider any d-tuple where all elements

from a′ come before en and all elements from a′′ after en. But if a′ and a′′ have, say, ` > 0

elements in common, then putting all the elements of a′ before en and the remaining r − `
elements of a′′ after en produces a d-tuple that avoids getting hit by schedules from F

(note that r > ` as a′ and a′′ are di�erent).

Now, since each bij can only assume values from the set {0, 1, . . . , r }, it follows that

B cannot have more than (r + 1)k columns. Therefore, (n − 1)r ≤ (r + 1)k , and so

k ≥ log(n − 1)r/ log(r + 1). Recall that xr =
(
x
r

)
· r ! ≥ (x/r)r · r !; we have

k ≥ log

((n − 1

r

)r
· r !

) /
log(r + 1)

=
r log(n − 1) − r log r + log r !

log(r + 1)

=
r

log(r + 1)
· log(n − 1) +w (r)

where

w (r) =
log r ! − r log r

log(r + 1)
≈
−r + (log r + logπ + log 2)/2

log(r + 1)
.

Substituting r = b(d − 1)/2c gives the desired result, because

r

log(r + 1)
=

bd−1

2
c

log

(
bd−1

2
c + 1

) ≥ d−2

2

log

(
d−1

2
+ 1

)
=

d − 2

2 log

(
d+1

2

) = d − 2

2 log (d + 1) − 2 log 2

≥
d

2 log (2d + 2)

and log(n − 1) = log(n · (1 − 1/n)) ≥ logn − 1 for n ≥ d ≥ 3. �

46 CHAPTER 5. TESTING WITH HITTING FAMILIES

5.2.2 Series-Parallel Orders
Series-parallel orders are de�ned inductively as follows.

singleton A singleton S = {•} with • ≤ • is a series-parallel order. When it does not

cause confusion, we also write • to refer to S.

serial composition For two disjoint series-parallel orders P and Q, the serial composi-

tion P · Q is a series-parallel order. The serial composition is de�ned as follows:

P · Q = (P ∪ Q, ≤), where x ≤ y if and only if x ∈ P and y ∈ Q, or x ≤ y in P, or

x ≤ y in Q.

parallel composition For two disjoint series-parallel orders P and Q, the parallel com-

position P ‖ Q is a series-parallel order. Recall that the parallel composition is

de�ned as follows: P ‖ Q = (P ∪ Q, ≤), where x ≤ y if and only if x ≤ y in P or

x ≤ y in Q.

It is not di�cult to see that the serial composition is associative, and the parallel composi-

tion is associative and commutative. Moreover, we can represent a series-parallel order

of size n as an algebraic expression built using n disjoint copies of the singleton S and

the operations · and ‖. Such a representation is not necessarily unique; however, if we

“�atten” the nested occurrences of both · and ‖ by applying associativity, the representation

becomes unique up to the order of the partial orders joined by the parallel composition.

We refer to the �attened algebraic expression for P as the canonical representation of P. In

the canonical representation of P, each maximal subexpression of the form P1 ‖ . . . ‖ Pk
for k ≥ 2 is considered a single application of the parallel composition, and each maximal

subexpression of the form P1 · . . . · Pk for k ≥ 2 is considered a single application of the

serial composition.

Two quantities related to the canonical representation ofP will be useful for describing

properties ofP. The �rst one, denoted ΓP , is de�ned as the number of parallel compositions

in the canonical representation of P. The second quantity, denoted as ∆P , is de�ned

as the largest number k such that P1 ‖ . . . ‖ Pk appears as a subexpression in the

canonical representation of P, or 1 if the canonical representation does not contain

parallel composition. In other words, ∆P is the largest number of partial orders composed

in a single application of the parallel composition while constructing P.

Clearly, chains and antichains are series-parallel orders. The chain Cn of size n is a

serial composition of n copies of a singleton, and the antichain An of size n is a parallel

composition of n copies of a singleton. Thus, ΓCn = 0, ∆Cn = 1, ΓAn = 1, and ∆An = n.

For a partial order P (not necessarily series-parallel), we de�ne the notion of layers
of elements. The minimal elements of P form the 0th layer, and a non-minimal element

5.2. SPECIFIC PARTIAL ORDERS 47

x ∈ P is on the (k + 1)th layer if k is the largest number so that x has an immediate

predecessor on the kth layer. We use `P (x) to denote the layer of x ∈ P. Clearly, a partial

order of height h has exactly h layers. We usually write `(x) instead of `P (x) if P is

understood from the context.

Lemma 5.5. Let P be a partial order and x ,y ∈ P two di�erent elements. If `(x) = `(y),
then x ‖ y.

Proof. First, note that for any x′,y′ ∈ P, if x′ ≤ y′, then `(x′) ≤ `(y′). (This is easily shown

by induction on `(y′).) We can now prove the claim by contraposition. Without loss of

generality, let x < y. Then the set {y′ | x ≤ y′ < y} is nonempty, so it contains a maximal

element, say y′. Clearly, y′ immediately precedes y, so we have `(x) ≤ `(y′) < `(y). �

We will need two important properties of series-parallel orders. The �rst one is that their

dimension is at most 2.

Proposition 5.6. The smallest 2-hitting family of schedules for a series-parallel order P
has size at most 2, that is, the dimension of P is at most 2.

Proof. Fix a non-�attened algebraic representation of P. We use it to construct FP =

{λP , ρP }, where λP and ρP are two schedules de�ned recursively as follows. If P is a

singleton {•}, then λ• = ρ• = •. If P is composed of P′ and Q′, let λP ′, ρP ′ and λQ ′, ρQ ′ be

the schedules for P′ and Q′ de�ned using the same �xed algebraic representation. Then,

if P = P′ · Q′, we de�ne λP = λP ′ · λQ ′ and ρP = ρP ′ · ρQ ′. Otherwise, if P = P′ ‖ Q′,

we de�ne λP = λP ′ · λQ ′ and ρP = ρQ ′ · ρP ′ (note the reversal of the schedules).

We show that FP is a 2-hitting family by induction. Clearly this is true for a singleton.

Assume the claim holds for some P′ and Q′ such that the algebraic representations of

P′ · Q′ or P′ ‖ Q′ appear as subexpressions of the �xed algebraic representation of

P. Then FP ′ = {λP ′, ρP ′} and FQ ′ = {λQ ′, ρQ ′} are 2-hitting families for P′ and Q′,

respectively. Now, if P is a serial or parallel composition of P′ and Q′ and (x ,y) is an

admissible pair in P, then either both x and y are in P′ or Q′, in which case one of λP
and ρP hits the pair by the inductive hypothesis, or one element is in P′ and the other in

Q′, in which case one of λP and ρP hits the pair by construction. �

The second property we need is that a series-parallel order cannot contain the “zig-zag”

order, whose Hesse diagram is shown in Figure 5.2. The zig-zag order on elements a,b, c,d
is characterized by having only three ordering constraints: a ≤ b, c ≤ b, and c ≤ d .

Lemma 5.7. Let P be a series-parallel order. Then P cannot be an extension of the zig-zag
order.

48 CHAPTER 5. TESTING WITH HITTING FAMILIES

a c

b d

Figure 5.2: The “zig-zag” order with ordering constraints a ≤ b, c ≤ b, and c ≤ d .

Proof. The following short argument is taken from Valdes, Tarjan, and Lawler (1982):

suppose P contains the zig-zag order as a restriction. Since P is not a singleton, it is a

composition of two components P′ and Q′. If the zig-zag is fully contained in either of

the components, we can restrict ourselves to that component and repeat the argument.

Therefore, we may assume that the components P′ and Q′ partition the zig-zag order

into two disjoint blocks. However, notice that no matter how we partition the four

elements, there are always two incomparable and two comparable elements in di�erent

blocks. Hence P can be neither the serial nor the parallel composition of P′ and Q′—a

contradiction. �

In fact, the converse of Lemma 5.7 also holds. In other words, series-parallel orders are

fully characterized by the absence of the zig-zag order, that is, a partial order is series-

parallel if and only if it does not contain the zig-zag order (Valdes, Tarjan, and Lawler

1982).

5.2.3 Binary Semilattices

In this section we study a somewhat technical class of partial orders—binary semilattices—
which are needed in the construction presented in Section 5.3.

De�nition 5.2. A partial order P is a semilattice if every pair of elements has an in�mum,

that is, for every x ,y ∈ P there exists an element x ∧ y ∈ P such that x ∧ y ≤ x and

x ∧y ≤ y, and for any other element z ∈ P such that z ≤ x and z ≤ y, we have z ≤ x ∧y.

In a binary semilattice additionally every element has at most 2 immediate successors.

Note that each semilattice P has the least element, denoted ⊥P or ⊥ for short, with

the property that ⊥ < x for every other x ∈ P.
3

If a series-parallel order P is also a

semilattice, then it cannot be a parallel composition. More precisely, in this case P is

3
In order for the least element to exist, a su�cient condition is that the semilattice is �nite; then the

least element is simply the in�mum of all the elements in the semilattice. Recall that all partial orders in

this thesis are �nite.

5.2. SPECIFIC PARTIAL ORDERS 49

either a singleton, or it has the form {⊥} · P′ for a series-parallel order P′ (which is not

necessarily a semilattice).

The reason we study binary semilattices is that we will need to be able to extend

series-parallel orders to series-parallel binary semilattices. Extending a series-parallel

order P to a series-parallel binary semilattice P′ may incur an increase in height. The

next lemma gives an upper bound on the height of P′ in terms of ΓP and ∆P .

Lemma 5.8. Let P be a series-parallel order of height h. Then P can be extended to a
series-parallel binary semilattice P′ of height at most h + ΓP dlog

2
∆Pe.

Proof. We construct the extensionP′ by induction on the structure ofP. IfP is a singleton,

no extension is needed. Assume for some k ≥ 2 and series-parallel orders P0, . . . ,Pk−1

that each Pi for 0 ≤ i < k can be extended to a series-parallel binary semilattice P′i of

height at most hi + Γi dlog
2
∆ie, where Γi = ΓPi , ∆i = ∆Pi , and Pi has height hi . Let P be

a composition of P0, . . . ,Pk−1. If the composition is serial, that is, P = P0 · . . . · Pk−1,

then it is easy to verify that P′ = P′
0
· . . . · P′

k−1
is a series-parallel binary semilattice. To

establish the bound on the height h′ of P′, note that we have

h′ ≤
∑

0≤i<k

hi + Γi dlog
2
∆ie ≤ h +

∑
0≤i<k

Γi dlog
2
∆Pe = h + ΓP dlog

2
∆Pe .

The crux of the proof is the case when the composition is parallel, that is, P = P0 ‖

. . . ‖ Pk−1. Assume without loss of generality that no Pi can be further decomposed as a

parallel composition. We start by extending P to P′ = P′
0
‖ . . . ‖ P′

k−1
. Note that if h′ is

the height of P′, at this point we have the following upper bound:

h′ ≤ max

0≤i<k
{hi + Γi dlog

2
∆ie} ≤ h + (ΓP − 1)dlog

2
∆ie .

Next, we saturate P′with layers of new in�ma with two immediate successors by applying

the following transformation. Introduce bk/2c new elements x0, . . . ,x bk/2c−1, and extend

P′ by replacing each parallel composition P′
2i ‖ P

′
2i+1

in P′ with Qi = {xi } · (P
′
2i ‖ P

′
2i+1

)
for 0 ≤ i < bk/2c. If k is odd, additionally set Qbk/2c = P

′
k−1

. Regardless of the parity

of k , the new P′ is P′ = Q0 ‖ . . . ‖ Qdk/2e−1, which is a parallel composition of dk/2e
series-parallel orders, none of which is a parallel composition itself. We continue applying

the transformation on P′ until it is no longer a parallel composition.

Let us analyze the e�ect of a single iteration of the transformation. First note that

each Qi for 0 ≤ i < bk/2c is a binary semilattice: let x ,y ∈ Qi be two elements; if they are

both in P′
2i or P′

2i+1
, the existence of their in�mum follows from the inductive hypothesis.

Otherwise they are in di�erent components or one of them is xi , so their in�mum is

xi . Furthermore, by the inductive hypothesis, elements in P′
2i and P′

2i+1
have at most 2

50 CHAPTER 5. TESTING WITH HITTING FAMILIES

immediate successors. Note that xi has exactly 2 immediate successors: the least elements

⊥P ′
2i

and ⊥P ′
2i+1

in P′
2i and P′

2i+1
, respectively. If k is odd, Qbk/2c is a binary semilattice by

the inductive hypothesis. By induction on the number of iterations of the transformation,

we conclude that once P′ is no longer a parallel composition, P′ is a binary semilattice,

as required.

Now let us count the total number of iterations; let this number be l . Then l is the

least number such that

dd· · · ddk/2e/2e · · ·e/2e︸ ︷︷ ︸
l times

≤ 1 .

In other words, l is the least number such that k ≤ 2
l
, that is, l = dlog

2
ke. Each iteration

of the transformation adds a new layer of in�ma to P′, which may increase the height

by 1. Hence, the total contribution of the added in�ma to the height is at most dlog
2
ke,

which is in turn at most dlog
2
∆Pe. Therefore, the �nal height h′ of P′ is upper-bounded

by h + (ΓP − 1)dlog
2
∆Pe + dlog

2
∆Pe = h + ΓP dlog

2
∆Pe, as required. �

5.2.4 Trees

Trees are a special case of series-parallel orders constructed by applying only the restricted

series-parallel composition of the form C· (T1 ‖ . . . ‖ Tk), where C is a chain and T1, . . . ,Tk
for k ≥ 1 are trees. It immediately follows that a tree is a semilattice. We will identify trees

with their Hasse diagrams, and we will use without speci�c introduction the standard

terminology regarding trees: nodes, the root node, leaves, the parent of a node, the

children of a node, etc.

Consider a complete binary tree T of height h. The size of T is n = 2
h − 1, and it

has dn/2e = 2
h−1

leaves and bn/2c = 2
h−1 − 1 inner nodes. It is not di�cult to see that

ΓT is precisely the number of inner nodes, i.e., ΓT = bn/2c. In other words, for a general

tree T , the best asymptotic bound on ΓT we can assume is ΓT = O (|T |). Now suppose

we have a tree T of height h which is not binary, and we want to extend it to a binary

semilattice. Then Lemma 5.8 bounds the height of the extension with h +O (|T |) log
2
∆T ,

which is not very useful.

Luckily, it turns out we can altogether ignore the quantity ΓT when it comes to trees.

Indeed, we can show a much tighter bound on the height of a binary extension of a tree.

Lemma 5.9. Let T be a tree of height h. Then T can be extended to a binary tree T ′ of
height at most h · dlog

2
∆T e.

Proof. We construct the extension T ′ by induction on the structure of T . If T is a

singleton, no extension is needed. Assume for some k ≥ 2 and trees T0, . . . ,Tk−1 that each

5.3. 3-HITTING FAMILIES FOR SERIES-PARALLEL ORDERS 51

Ti for 0 ≤ i < k can be extended to a binary tree T ′i of height at most hi · dlog
2
∆ie, where

∆i = ∆Ti , and Ti has height hi . Let T = C · (T0 ‖ . . . ‖ Tk−1) for some chain C.

We proceed similarly as in the proof of Lemma 5.8. First we extend T to T ′ = C · (T ′
0
‖

. . . ‖ T ′
k−1

). Note that if h′ is the height of P′, at this point we have the following upper

bound:

h′ ≤ |C| + max

0≤i<k
{hi · dlog

2
∆ie} ≤ |C| + (h − |C|)dlog

2
∆T e ,

since hi ≤ h − |C| for all i , and ∆i ≤ ∆T .

Next, we saturate T ′ with layers of new in�ma with two immediate successors by

applying the following transformation. Introduce bk/2c new elements x0, . . . ,x bk/2c−1, and

extend T ′ by replacing each parallel composition T ′
2i ‖ T

′
2i+1

in T ′ with Qi = {xi } · (T
′

2i ‖

T ′
2i+1

) for 0 ≤ i < bk/2c. If k is odd, additionally set Qbk/2c = T
′

k−1
. Regardless of the parity

of k , the new T ′ is T ′ = C · (Q0 ‖ . . . ‖ Qdk/2e−1), which is a tree with dk/2e subtrees.

Continue applying the transformation on T ′ as long as there are more than two subtrees.

Like before, we �rst note that each Qi is a binary tree, and proceed with counting

the number of iterations of the transformation. Let this number be l . Then l is the least

number such that

dd· · · ddk/2e/2e · · ·e/2e︸ ︷︷ ︸
l times

≤ 2 .

In other words, l is the least number such that k ≤ 2
l+1

, that is, l = dlog
2
ke − 1. Each

iteration of the transformation adds a new layer of in�ma to T ′, which may increase the

height by 1. Hence, the total contribution to the height is at most dlog
2
ke − 1, which is in

turn at most dlog
2
∆T e − 1. Therefore, the �nal height h′ of T ′ is upper-bounded by

h′ ≤ |C| + (h − |C|)dlog
2
∆T e + dlog

2
∆T e − 1

= h · dlog
2
∆T e − (|C| − 1) (dlog

2
∆T e − 1)

≤ h · dlog
2
∆T e ,

as required. �

5.3 3-Hitting Families for Series-Parallel Orders
In this section we present the �rst of the two main results of this chapter: a construction

of 3-hitting families for series-parallel orders. For a series-parallel binary semilattice

P of height h, the construction produces a 3-hitting family of size at most 4h. For a

general series-parallel order P, the bound on the size is 4(h + ΓP · dlog
2
∆Pe). This has

the following consequences for partial orders subsumed by series-parallel orders:

52 CHAPTER 5. TESTING WITH HITTING FAMILIES

1. For an antichain ofn elements, the bound collapses to 4dlog
2
ne+4, which di�ers by a

constant factor from the bounds obtained in Examples 3.2 and 3.3 and summarized in

Theorem 5.4. Unlike those bounds, which rely on the nonconstructive probabilistic

method, the new bound follows from an explicit construction.

2. For a binary tree of height h, the bound is 4h.

3. For a general tree of height h with maximal outdegree ∆, the bound is 4hdlog
2
∆e.

The construction for a series-parallel order P proceeds in two phases. In the �rst phase,

we extend P to a series-parallel order P′ which is additionally a binary semilattice. In the

second phase, for a series-parallel binary semilattice of height h, we explicitly construct a

3-hitting family of size 4h. For the �rst phase we use Lemmas 5.8 and 5.9. The second-phase

construction is given by the following theorem.

Theorem 5.10. The smallest 3-hitting family of schedules for a series-parallel binary
semilattice P of height h has size at most 4h.

Proof. Let F2 = {λ, ρ} be a 2-hitting family for P, whose existence is ensured by Proposi-

tion 5.6. We use λ as a reference total order on P; in particular, given x ∈ P, we denote

by s1(x) and s2(x) the �rst and the second immediate successor of x in λ, if they exist.

For i such that 0 ≤ i < h, we de�ne four schedules: λ(i)
1

, λ(i)
2

, ρ (i)
1

, and ρ (i)
2

. For α ∈ F2

and j ∈ {1, 2}, the schedule α (i)
j is de�ned as follows: in the �rst phase, for any x ∈ P such

that `(x) = i and sj (x) is de�ned, the schedule omits all elements y ≥ sj (x); it schedules

the elements not omitted in this way according to α . In the second phase, the schedule

schedules the elements omitted in the �rst phase according to α .

Collect λ(i)
1

, λ(i)
2

, ρ (i)
1

, and ρ (i)
2

for all i , 0 ≤ i < h, into a family F3; the family contains at

most 4h schedules. We claim that F3 is a 3-hitting family for P. To see this, let a = (x ,y, z)
be an admissible triplet. We �rst show that two schedules in F3 hit (x , z); then we show

that one of them places y in between x and z.

Let w = x ∧ z. Since a is admissible, either x ≤ z, in which case w = x and w < z, or

x ‖ z, in which case w < x and w < z. Consider the latter case �rst. Let Mx = min{x′ |
w < x′ ≤ x } and Mz = min{z′ | w < z′ ≤ z}. Clearly, both sets are nonempty. Moreover,

they are disjoint, for suppose that w′ ∈ Mx ∩Mz . Then by de�nition we have w < w′.
However, since w′ ≤ x and w′ ≤ z, we have w′ ≤ (x ∧ z) = w , which is a contradiction.

Finally, note that Mx ∪ Mz is contained in the set of immediate successors of w . For

suppose that, say, x′ ∈ Mx is not an immediate successor of w ; then there exists x′′ ∈ P
such that w < x′′ < x′ ≤ x , contradicting the minimality of x′. Since w has at most 2

immediate successors, we conclude that Mx ∪Mz = {s1(w), s2(w)}, that is, Mx = {s3−j (w)}
and Mz = {sj (w)} for some j ∈ {1, 2}.

5.3. 3-HITTING FAMILIES FOR SERIES-PARALLEL ORDERS 53

y x z

Figure 5.3: The obstacle for the layer-based construction of Theorem 5.10: unless the

tuples (x ,y, z) and (x , z,y) are already hit by the initial 2-hitting family, all schedules

constructed by the layer-based construction will miss them.

Note that x � sj (w), since otherwise we would have sj (w) ≤ (x ∧ z) = w . Can it

happen that there is another element w′ ∈ P such that `(w′) = `(w) and x ≥ sj (w
′)?

Suppose it can. Then by Lemma 5.5, the elements w and w′ are incomparable. Also, w′

and z are incomparable: it cannot be z ≤ w′ because w′ ≤ x and x ‖ z, and it cannot be

w′ ≤ z because then we would have w′ ≤ (x ∧ z) = w . Hence the elements w′,x ,w, z
form a zig-zag, which cannot happen by Lemma 5.7. It follows that for i = `(w) (note

i < h), the schedules λ(i)j and ρ (i)j schedule x in the �rst phase and z in the second phase.

Therefore, both schedules hit (x , z).
Now, there either exists or does not exist an element w′ ∈ P such that `(w′) = i and

y ≥ sj (w
′); hence y is scheduled either in the �rst or in the second phase by both λ(i)j and

ρ (i)j . If it is scheduled in the �rst phase, then since the pair (x ,y) is admissible, one of λ

and ρ, and consequently one of λ(i)j and ρ (i)j hits the pair. Analogously, one of λ(i)j and

ρ (i)j hits (y, z) if y is scheduled in the second phase. In both cases, one of λ(i)j and ρ (i)j hits

(x ,y, z).
It remains to consider the case when x ≤ z, which implies that x = x ∧z. By reasoning

as before, we conclude that x has an immediate successor sj (x) for j ∈ {1, 2} such that

z ≥ sj (x). Then, if `(x) = i , both λ(i)j and ρ (i)j hit (x , z), and one of them places y in

between, thus hitting (x ,y, z). �

By combining Lemma 5.8 and Theorem 5.10, we get the following corollary.

Corollary 5.11. The smallest 3-hitting family of schedules for a series-parallel order P of
height h has size at most 4h + 4ΓP dlog

2
∆Pe. �

At the end of this section, let us mention that the layer-based construction of Theorem

5.10 does not work for a broader class of binary semilattices, one that would contain

partial orders that are not series-parallel. This is because any such partial order necessarily

contains the zig-zag order (Valdes, Tarjan, and Lawler 1982), and using any zig-zag one

54 CHAPTER 5. TESTING WITH HITTING FAMILIES

can easily construct the obstacle that was ruled out in the proof of Theorem 5.10. For

example, consider the binary semilattice in Figure 5.3. Assume that the initial 2-hitting

family does not hit the tuple (x ,y, z); say, the schedules λ and ρ order the elements as

y · x · z and z · x · y. As it turns out, at layers 0 and 1 there is always a node such that

x is its left successor, and a node such that x is its right successor. Hence, all schedules

constructed from λ and ρ schedule x in the second phase. This implies that in order for

(x ,y, z) to be hit, all of x ,y, z need to be scheduled in the second phase. But then by

construction the schedules must agree on x ,y, z with either λ or ρ, both of which miss

(x ,y, z).

5.4 d-Hitting Families for Trees for d ≥ 3

Consider a complete binary tree T h
of height h ≥ 1. In this section we assume that

elements of T h
are strings: T h = {0, 1}<h with x ≤ y for x ,y ∈ T h

i� x is a pre�x of y.

The kth layer of T h
is {0, 1}k , and nodes of the (h − 1)th layer are leaves. Unless x ∈ T h

is

a leaf, nodes x 0 and x 1 are the left and the right child of x , respectively. (Recall that the

juxtaposition here denotes concatenation of strings, with the purpose of distinguishing

individual strings and their sequences.) The tree T h
has n = 2

h − 1 nodes.

Fix some d and let T h
be a complete binary tree of height h. In this section we prove

the second of the two main results of the chapter, namely the following theorem.

Theorem 5.12. For any d ≥ 3 the complete binary tree of height h has a d-hitting family
of schedules of size exp(d) · hd−1.

Note that in terms of the number of nodes of T h
, which is n = 2

h−1, Theorem 5.12 gives a

d-hitting family of size polylogarithmic in n. The proof of the theorem is constructive, and

we divide it into three steps. The precise meaning to the steps relies on auxiliary notions

of a pattern and of d-tuples conforming to a pattern; we give all necessary de�nitions

below.

Lemma 5.13. For each admissible d-tuple a = (a1, . . . ,ad) there exists a pattern p such
that a conforms to p.

Lemma 5.14. For each pattern p there exists a schedule αp that hits all d-tuples a that
conform to p.

Lemma 5.15. The total number of patterns, up to isomorphism, does not exceed exp(d) ·hd−1.

The statement of Theorem 5.12 follows easily from these lemmas. The key insight is the

de�nition of the pattern and the construction of Lemma 5.14.

5.4. D-HITTING FAMILIES FOR TREES FOR D ≥ 3 55

In the sequel, for partial orders that are trees directed from the root we will use the

standard terminology for graphs and trees (relying on Hasse diagrams): node, outdegree,

siblings, 0- and 1-principal subtree of a node, isomorphism. We denote the parent of a

node u by paru and the least common ancestor of nodes u and v by lca(u,v).
If T is a tree and X ⊆ T is a subset of its nodes, then by [X] we denote the lca-closure

of X : the smallest set Y ⊆ T such that, �rst, X ⊆ Y and, second, for any y1,y2 ∈ Y it holds

that lca(y1,y2) ∈ Y . The following lemma is a variation of a folklore Lemma 1 in Fomin

et al. (2012).

Lemma 5.16. |[X]| ≤ 2 |X | − 1.

De�nition 5.3 (pattern). A pattern is a quintuple p = (D, 4, s, `,π) where:

— d ≤ |D | ≤ 2d − 1,

— (D, 4) is a partial order which is, moreover, a tree directed from the root,

— the number of non-leaf nodes in (D, 4) does not exceed d − 1,

— each node of (D, 4) has outdegree at most 2,

— the partial function s : D ⇀ {0, 1} speci�es, for each pair of siblings v1,v2 in (D, 4),
which is the left and which is the right child of its parent: s (vt) = 0 and s (v3−t) = 1

for some t ∈ {1, 2}; the value of s is unde�ned on all other nodes of D,

— the partial function ` : D ⇀ {0, 1, . . . ,h − 1} associates a layer with each non-leaf

node of (D, 4), so that u ≺ v implies `(u) < `(v); the value of ` is unde�ned on all

leaves of D, and

— π is a schedule for (D, 4).

We remind the reader that the symbol ≤ refers to the same partial order as T h
.

De�nition 5.4 (conformance). Take any pattern p = (D, 4, s, `,π) and any tuple a =
(a1, . . . ,ad) of d distinct elements of the partial order T h

. Consider the set {a1, . . . ,ad }:
the restriction of ≤ to its lca-closure A = [{a1, . . . ,ad }] is a binary tree, (A, ≤). Suppose

that the following conditions are satis�ed:

a) the trees (D, 4) and (A, ≤) are isomorphic: there exists a bijective mapping i : D → A
such that v1 4 v2 in D i� i (v1) ≤ i (v2) in T h

;

b) the partial function s correctly indicates left- and right-subtree relations: for any

v ∈ D, s (v) = b ∈ {0, 1} if and only if i (v) lies in the b-principal subtree of i (par(v));

56 CHAPTER 5. TESTING WITH HITTING FAMILIES

c) the partial function ` correctly speci�es the layer inside T h
: for any non-leaf v ∈ D,

`(v) = |i (v) |; recall that elements of T h
are binary strings from {0, 1}<h;

d) the schedule π for (D, 4) hits the tuple i−1(a) = (i−1(a1), . . . , i
−1(ad)).

Then we shall say that the tuple a conforms to the pattern p.

We now sketch the proof of Lemma 5.14. Fix any pattern p = (D, 4, s, `,π). Recall that we

need to �nd a schedule αp that hits all d-tuples a = (a1, . . . ,ad) conforming to p. We will

pursue the following strategy. We will cut the tree T h
into multiple pieces; this cutting

will be entirely determined by the pattern p, independent of any individual a. Each piece

in the cutting will be associated with some element c ∈ D, so that each element of D
can have several pieces associated with it. In fact, every piece will form a subtree of T h

(although this will be of little importance). The key property is that, for every d-tuple

a = (a1, . . . ,ad) conforming to p, if i is the isomorphism from De�nition 5.4, then each

element ak , 1 ≤ k ≤ d , will belong to a piece associated with i−1(ak). As a result, the

desired schedule αp can be obtained in the following way: arrange the pieces according to

how π schedules elements of D and pick any possible schedule inside each piece. This

schedule will be guaranteed to meet the requirements of the lemma.

We now give detailed proofs of the Lemmas 5.16, 5.13, 5.14, and 5.15.

Proof of Lemma 5.16

Proof of Lemma 5.16. Consider the tree T as a partial order, (T , ≤), where the root is the

smallest element. Let X ⊆ T . It is immediate that the restriction of ≤ to [X] is also a tree,

([X], ≤). Suppose [X] = L ∪ B ∪U where L is the set of leaves of this new tree ([X], ≤),
B is the set of its non-leaf nodes with more than 1 child, and U is the set of its non-leaf

nodes with exactly 1 child. Sets L, B, and U are disjoint.

We now trace the “provenance” of elements of these sets, i.e., look into why they are

included in [X]. It is clear that L ⊆ X and U ⊆ X , because only nodes with 2 or more

children can belong to [X] \ X . Nodes of the set B are the only “branching points” of the

tree ([X], ≤), and thus their number cannot exceed |L| − 1. More formally, denote by ni
the number of nodes of ([X], ≤) with exactly i children, i ≥ 0. As each edge in the graph

departs from some node and arrives at some node,∑
v∈[X]

indeg(v) =
∑
v∈[X]

outdeg(v).

The left-hand side of this equation is n − 1, where n = |[X]|, because each node except for

5.4. D-HITTING FAMILIES FOR TREES FOR D ≥ 3 57

the root has a parent. Therefore,

n − 1 =
∑
i≥0

ni · i,

n0 + n1 + n2 + . . . − 1 = n1 + 2n2 + 3n3 + . . . ,

n0 + n1 + n2 + . . . − 1 ≥ n1 + 2n2 + 2n3 + . . .

Denote r = |B | = n2 + n3 + . . ., then n0 + n1 + r − 1 ≥ n1 + 2r , and so r ≤ n0 − 1, which is

the same as |B | ≤ |L| − 1.

To sum up, |[X]| = |L ∪U | + |B | ≤ |L ∪U | + |L| − 1. Since L ∪U ⊆ X as argued above,

we conclude that |[X]| ≤ 2|X | − 1. �

Proof of Lemmas 5.13 and 5.15

Proof of Lemma 5.13. Recall that we need to show that for each admissible d-tuple a there

exists a pattern p such that a conforms to p. Take any such tuple a = (a1, . . . ,ad); since it

is admissible, there exists a schedule α for T h
that hits a. Consider the set {a1, . . . ,ad }

and take its lca-closure in T h
: D = [{a1, . . . ,ad }]. Let 4 be the restriction of ≤ to D.

Now for each non-leaf node v ∈ D in the partial order (D, 4) de�ne `(v) = |v |; again,

recall that elements of T h
are binary strings from {0, 1}<h . Furthermore, consider each

node v ∈ D in (D, 4) with outdegree 2; if v′ and v′′ are the children of v in (D, 4),
then v′ and v′′ lie in di�erent principal subtrees of v in T h

(because otherwise the

equality lca(v′,v′′) = v cannot hold); that is, v′ = v 0u′ and v′′ = v 1u′′ for some strings

u′,u′′ ∈ {0, 1}∗. Accordingly, de�ne s (v′) = 0 and s (v′′) = 1. Finally, take the schedule α
and restrict it to the set D; denote the obtained schedule by π .

It is not di�cult to check that the tuple a conforms to the constructed pattern p =
(D, 4, s, `,π). Note that the upper bound on |D | is by Lemma 5.16 and the upper bound

on the number of non-leaf nodes in (D, 4) holds by the following argument. Letm ≤ d be

the number of leaves of (D, 4) in the set {a1, . . . ,ad }; then (D, 4) has exactlym− 1 binary

nodes (none of them leaves). Furthermore, all non-leaf unary nodes in (D, 4) cannot

belong to the di�erence D \{a1, . . . ,ad } and thus all lie in the set {a1, . . . ,ad }; their number

cannot exceed the number of all non-leaf nodes in {a1, . . . ,ad }, i.e., is at most d−m. Hence,

the total number of non-leaf nodes in (D, 4) does not exceed (m − 1) + (d −m) = d − 1.

This concludes the proof. �

Proof of Lemma 5.15. We need to count the number of patterns, up to isomorphism. A

pattern is fully speci�ed by its components:

58 CHAPTER 5. TESTING WITH HITTING FAMILIES

— the binary tree (D, 4) with at most 2d − 1 nodes and the partial function s that

speci�es a planar embedding of this tree—the total number of such embeddings (for

all trees) is at most 4
2d−1/3;

— the partial function ` with domain of size at most the number of non-leaf nodes in

D (i.e., at most d − 1), and co-domain of size h—the number of suitable functions is

at most hd−1
;

— the schedule π for (D, 4)—of which there are at most (2d − 1)!.

Thus the total number of patterns does not exceed

4
2d−1/3 · hd−1 · (2d − 1)! = exp(d) · hd−1.

This completes the proof. �

Proof of Lemma 5.14
Proof of Lemma 5.14. Fix any pattern p = (D, 4, s, `,π). Recall that we need to �nd a

schedule αp that hits all d-tuples a = (a1, . . . ,ad) conforming to p. We will pursue the

following strategy. We will cut the tree T h
into multiple pieces; this cutting will be

entirely determined by the pattern p, independent of any individual a. Each piece in

the cutting will be associated with some element c ∈ D, so that each element of D can

have several pieces associated with it. In fact, every piece will form a subtree of T h

(although this will be of little importance). The key property is that, for every d-tuple

a = (a1, . . . ,ad) conforming to p, if i is the isomorphism from De�nition 5.4, then each

element ak , 1 ≤ k ≤ d , will belong to a piece associated with i−1(ak). As a result, the

desired schedule αp can be obtained in the following way: arrange the pieces according to

how π schedules elements of D and pick any possible schedule inside each piece. This

schedule will be guaranteed to meet the requirements of the lemma.

We now show how to implement this strategy. We describe a procedure that, given

p, constructs a suitable αp . To simplify the presentation, we will describe cutting of T h

and constructing αp simultaneously, although they can be performed separately. The

cutting itself is de�ned by the following formalism. For each element c ∈ D, we de�ne

a set E (c) ⊆ T h
, with the intention that elements from E (c) point to the roots of all

pieces associated with c . The pieces themselves stretch out down the tree up to (and

including) layer `(c); as the value `(c) is unde�ned for leaves of (D, 4), we will instead

use the extension of ` that assigns `(c) = h for all leaves c of (D, 4), abusing the notation

`. As we go along, we add more and more elements to the schedule αp , constructing

it on the way; we will refer to this as scheduling these elements. The elements in E (c)

5.4. D-HITTING FAMILIES FOR TREES FOR D ≥ 3 59

can be thought of as enabled after scheduling the elements from previously considered

pieces: that is, all these elements have not been scheduled yet, but all their immediate

predecessors (parents) in (D, 4) have. This will allow us to schedule the pieces rooted at

E (c) at any suitable moment. We will not give any “prior” de�nition of E (c): these sets

will only be determined during the process.

Overall, the invariant of the procedure is that, when we de�ne E (c), the elements

in E (c) form an antichain, are enabled (not scheduled yet, but all predecessors already

scheduled), and belong to layers ≤ `(c) of the partial order T h
.

Let us now �ll in the missing details of the process. At �rst, no elements are scheduled,

and the set E (c∗), where c∗ is the root of (D, 4), is de�ned as the singleton {ε }; recall that

ε is the root of the tree T h
. The procedure goes over the schedule π , which is part of

the pattern p, and handles elements c scheduled by π one by one. The �rst element is, of

course, the root of (D, 4), which we called c∗. Note that at the beginning of the procedure,

the invariant is satis�ed.

To handle an element c scheduled by π , our procedures performs the following steps.

It �rst schedules all elements in the set

U (c) = {y ∈ T h | x ≤ y for some x ∈ E (c) and |y | ≤ `(c)},

i.e., all elements x ∈ E (c) and all elements that are successors of x ∈ E (c) in layers up

to and including `(c). Note that this set U (c) consists of a number of disjoint subtrees

of the tree T h
; these subtrees are the pieces that we previously discussed, and U (c) is

their union. Each piece is non-empty: for all x ∈ E (c), the set of all y such that x ≤ y and

|y | ≤ `(c) contains at least the element x itself, because, by our invariant, `(x) ≤ `(c);
therefore, E (c) ⊆ U (c). The pieces (subtrees) are disjoint because the elements in E (c)
form an antichain. Finally, scheduling these pieces is possible because, on one hand,

no x ∈ E (c) has been scheduled previously and, on the other hand, all predecessors of

x ∈ E (c) have already been scheduled. Note that we can schedule all elements from U (c)
in any order admitted by T h

, for instance using lexicographic depth-�rst traversal.

After this, the procedure forms new sets E; the precise choice depends on the outdegree

of c in (D, 4). Recall that this outdegree does not exceed 2 by our de�nition of the

pattern. Observe that after scheduling the pieces associated with c , as described in

the previous paragraph, the following elements, for all x ∈ E (c), are made enabled:

z ∈ T h ∩ ({0, 1}`(c) {0, 1}) with x ≤ z. In fact, this set is empty i� `(c) = h; by our choice

of `, this happens if and only if d = 0, i.e., when c is a leaf of (D, 4). In such a case, no new

set E is formed and the procedure proceeds to the next element of π . Otherwise d ∈ {1, 2};
we consider each case separately. If d = 1, then the element c ∈ D has a single child in the

tree (D, 4). Denote this child by c′ and de�ne

E (c′) = {z ∈ {0, 1}`(c)+1 | x ≤ z for some x ∈ E (c)}.

60 CHAPTER 5. TESTING WITH HITTING FAMILIES

If d = 2, then the element c ∈ D has two children in the tree (D, 4). Let these children be

c0 and c1, such that s (cr) = r for both r ∈ {0, 1}. We now split the set of newly enabled

elements as follows:

E (c0) = {z̄ 0 ∈ {0, 1}`(c)+1 | x ≤ z̄ 0 for some x ∈ E (c)},

E (c1) = {z̄ 1 ∈ {0, 1}`(c)+1 | x ≤ z̄ 1 for some x ∈ E (c)}.

Note that the elements z in E (c′) (or in E (c0) and E (c1), depending on d) form an antichain,

are enabled, and, moreover, satisfy the inequality `(z) ≤ `(c′), because `(z) = `(c) + 1

and `(c) < `(c′) by the choice of `. This ensures that during the run of the procedure the

invariant is maintained.

It is not di�cult to see that the described procedure outputs some schedule αp for

T h
. We now show why this αp satis�es our requirements. Indeed, pick any admissible

d-tuple a = (a1, . . . ,ad) conforming to the pattern p; we need to check that αp hits a. In

fact, by the choice of our strategy, it is su�cient to check that each element ak , 1 ≤ k ≤ d ,

belongs to a piece associated with the element i−1(ak) where i is the isomorphism from the

de�nition of conformance. In other words, we need to ensure that each element ak belongs

to the set U (c) for c = i−1(ak); we will prove a stronger claim that ak ∈ U (c) ∩ {0, 1}`(c)

for this c . Note that the choice of U (c) is such that U (c) ⊆ {0, 1}≤`(c) .
The proof of this claim follows our construction of αp . Indeed, consider the element

a1 �rst; we necessarily have i−1(a1) = c∗. By our de�nition of conformance, a1 is on the

`(c∗)th layer in the tree T h
, that is, |a1 | = `(c∗). By the description of our procedure,

all elements from {0, 1}`(c∗) are associated with c∗, i.e., belong to U (c∗) and and are thus

scheduled during the �rst step of the procedure. Note that since `(c) > `(c∗) for all c , c∗
in D and ` correctly speci�es the height in T h

, none of the elements a2, . . . ,ad can be

scheduled before a1. Also observe that the existence of the isomorphism i ensures that all

the elements a2, . . . ,ad are successors of a1.

It now remains to follow the inductive step: suppose the claim holds for an element

ak with i−1(ak) = c for some c ∈ D. As soon as our procedure schedules U (c) ∩ {0, 1}`(c) ,
all its successors become enabled, because U (c) ⊆ {0, 1}≤`(c) . We now need to consider

three cases depending on the value of d . If d = 0, there is nothing to prove. If d = 1, both

successors of ak in T h
are included into E (c′) ⊆ U (c′). where c′ is the only child of c

in (D, 4). by our choice of ` it holds that `(c′) = |i (c′) |. Since the element i (c′) is a (not

necessarily direct) successor of i (c) and is di�erent from i (c), it follows that x ≤ i (c′) for

some element x ∈ E (c). But then it follows that i (c′) ∈ U (c′) by the choice ofU . Similarly,

consider d = 2. All 0-children and 1-children of ak in T h
are included in E (c0) and E (c1),

respectively, where by cr , r ∈ {0, 1}, we denote the (unique) child of c in (D, 4) that has

s (cr) = r . Since s correctly speci�es 0- and 1-principal subtree relations in T h
, it follows

that i (cr) belongs to the r -principal subtree of i (c), for each r ∈ {0, 1}. So our choice

5.5. FROM HITTING FAMILIES TO SYSTEMATIC TESTING 61

of E (c0) and E (c1) ensures that, for each r ∈ {0, 1}, there exists an x ∈ E (cr) such that

x ≤ i (cr). The conditions on the layer are checked in the same way as in the case d = 1;

the upshot is that i (cr) ∈ U (cr) ∩ {0, 1}
`(cr)

for both r . This completes the proof of the

claim, from which the correctness of the procedure constructing αp follows.

This concludes the proof of Lemma 5.14. �

Remark 2. The proof above cuts the tree right below the layers speci�ed by the function `;
this choice is somewhat arbitrary and can be changed. Moreover, for presentation purposes

we also decided to schedule all elements of sets U (c) at once. This choice is essentially

employing a breadth-�rst strategy: as soon as we get to process c , we necessarily schedule

all possible candidates for its image i (c). However, a depth-�rst strategy also works: in

this strategy, elements x ∈ E (c) are processed one-by-one. More precisely, the procedure

can �rst schedule all elements of U (c) that are successors of x , essentially going into the

subtree of T h
rooted at x . After this, instead of switching to a di�erent x′ ∈ E (c), the

procedure could stay inside this subtree and follow, as usual, the guidance of π , assuming
that the chosen subtree indeed contains i (c). Only after scheduling all elements of the

subtree (i.e., all u ∈ T h
such that x ≤ u) does the procedure come back to its set E (c) and

proceed to the next candidate x′ ∈ E (c). In fact, during the run of this modi�ed procedure

many di�erent sets E (c) will be de�ned (as long as c , c∗); all these sets will be disjoint,

and their union will be equal to the original set E (c) as de�ned in the proof above.

5.5 From Hitting Families to Systematic Testing
Hitting families of schedules serve as a theoretical framework for systematically exposing

all bugs of small depth. However, bridging the gap from theory to practice poses several

challenges, which we describe in this section.

To make the discussion concrete, we focus on a speci�c scenario: testing the rendering

of web pages in the browser. Web pages exhibit event-driven concurrency: as the browser

parses the page, it concurrently executes JavaScript code registered to handle various

automatic or user-triggered events. Many bugs occur as a consequence of JavaScript’s

ability to manipulate the structure of the page while the page is being parsed. Previous

work shows such bugs are often of small depth (Jensen et al. 2015; Raychev, M. T. Vechev,

and Sridharan 2013).

As an example, consider the web page in Fig. 5.4. In the example, the image (represented

by the tag) has an on-load event handler that calls the function loaded() once the

image is loaded. The function, de�ned in a separate script block, changes the text of the

paragraph p to Loaded. There are two potential bugs in this example. The �rst one is of

depth d = 2, and it occurs if the image is loaded quickly (for example, from the cache),

62 CHAPTER 5. TESTING WITH HITTING FAMILIES

<script >

function loaded () {
document.getElementById('p'). innerHTML = 'Loaded ';

}
</script >
<p id="p">Waiting ...</p>

Figure 5.4: Example of bugs of depth d = 2 and d = 3 in a web page

<script >

function loaded () {
var p = document.getElementById('p');
if (p == null) {

setTimeout(loaded , 10);
} else {

p.innerHTML = 'Loaded ';
}

}
</script >
<p id="p">Waiting ...</p>

Figure 5.5: Using a timer to �x the bug from Fig. 5.4 involving a non-existent element

before the browser parses the <script> tag. In this case, the on-load handler tries to call

an unde�ned function. The second bug is of depth d = 3, and it occurs if the handler is

executed after the <script> tag is parsed, but before the <p> tag is parsed. In this case,

the function loaded() tries to access a non-existent HTML element.

Next, we identify and discuss three challenges.

Partial Orders Need Not Be Static

Our theoretical model assumes a static partially ordered set of elements, and allows

arbitrary reordering of independent (incomparable) elements. For the web page in Fig. 5.4,

there are three parsing events (corresponding to the three HTML tags) and an on-load

event. The parsing events are chained in the order their tags appear in the code. The

on-load event happens after the tag is parsed, but independently of the other

parsing events, giving a tree-shaped partial order.

In more complex web pages, the situation is not so simple. Events may be executions

5.5. FROM HITTING FAMILIES TO SYSTEMATIC TESTING 63

of scripts with complex internal control-�ow and data dependencies, as well as with e�ect

on the global state. Once a schedule is reordered, new events might appear, and some

events might never trigger. An example showing a more realistic situation is given in

Fig. 5.5. In order to �x the bug involving a non-existent HTML element p, the programmer

now explicitly checks the result of getElementById(). If p does not exist (p == null),

the programmer sets a timer to invoke the function loaded() again after 10 milliseconds.

As a consequence, depending on what happens �rst—the on-load event or the parsing

of <p>—we may or may not observe one or more timeout events. Note that the chain

of timeout events also depends on parsing the <script> tag. If the tag is not parsed,

the loaded() function does not exist, so no timer is ever set. Moreover, the number of

timeout events depends on when exactly the <p> tag is parsed.

The example shows that there is a mismatch between the assumption of static partially

ordered events and the dynamic nature of events occurring in complex web pages. We

study the mismatch in detail in Chapter 6, where we show that dynamic partial orders

can be modeled using the notions of upgrowing posets and scheduling posets. We also give

an online (on-the-�y) construction of hitting families for such posets. Here we note that

even the “static” theory of hitting families can be applied as a testing heuristic. While

we lose completeness (in the sense of hitting all depth-d bugs), we retain the variety of

di�erent event orderings. In the context of web pages, an initial execution of a page gives

us an initial partially ordered set of events. We use it to construct a hitting family of

schedules, which we optimistically try to execute. The approach is based on the notion of

approximate replay, which is employed by R4
, a stateless model checker for web pages

(Jensen et al. 2015). We come back to this approach later in the section.

Beyond Trees and Series-Parallel Orders

Our results on trees and series-parallel orders are motivated by the existing theoretical

models of asynchronous programs (Jhala and Majumdar 2007; Ganty and Majumdar 2012;

Emmi, Qadeer, and Rakamaric 2011a), where the partial orders induced by event handlers

indeed form these speci�c partial orders. However, in the context of web pages, events

need not necessarily be ordered as trees, not even as series-parallel orders. An example

of a feature that introduces additional ordering constraints is deferred scripts. Scripts

marked as deferred are executed after the page has been loaded, and they need to be

executed in the order in which their corresponding <script> tags were parsed (Petrov

et al. 2012). The tree approximation corresponds to testing the behavior of pages when

the deferred scripts are treated as normal scripts and loaded right away.

In Chapter 6 we study a construction of hitting families that works for general partial

orders. However, due to the existence of partial orders such as the standard example

64 CHAPTER 5. TESTING WITH HITTING FAMILIES

Table 5.1: For each website, the table show the number of events in the initial execution,

the height of the partial order (happens-before graph), the number of schedules generated

for d = 3, and the number of schedules for d = 3 with pruning based on races.

Website # Events Height d = 3 d = 3

(pruned)

abc.xyz 337 288 561 0

newscorp.com 1362 875 2689 100

thehartford.com 2018 1547 3913 138

www.allstate.com 4534 3822 9023 106

www.americanexpress.com 2971 2586 5897 340

www.bankofamerica.com 2305 2095 4561 150

www.bestbuy.com 301 248 576 10

www.comcast.com 188 118 337 16

www.conocophillips.com 4184 3478 8286 248

www.costco.com 7331 6390 14614 364

www.deere.com 2286 1902 4516 236

www.generaldynamics.com 2820 2010 5611 272

www.gm.com 2337 1473 4600 94

www.gofurther.com 1117 638 2154 568

www.homedepot.com 3780 2100 7515 1526

www.humana.com 5611 4325 11174 2058

www.johnsoncontrols.com 2953 2395 5881 450

www.jpmorganchase.com 4134 3519 8247 1316

www.libertymutual.com 3885 3560 7735 324

www.lowes.com 6938 4383 13778 3438

www.massmutual.com 3882 3313 7682 1852

www.morganstanley.com 2752 2301 5402 128

www.utc.com 4081 3266 8100 206

www.valero.com 2116 1849 4178 38

(see Example 5.1), no general construction can achieve polylogarithmic upper bounds.

Therefore, the question of developing constructions for other special cases of partial

orders that capture common programming idioms remains open.

Unbalanced Trees

For a tree of height h, constructions from Sections 5.3 and 5.4 give 3-hitting families of

size O (h) and O (h2), respectively. If the tree is balanced, the cardinality of these families

are exponentially smaller than the number of events in the tree. However, in the web

page setting, trees are not balanced.

In order to inspect the shape of partial orders occurring in web pages, we randomly

5.5. FROM HITTING FAMILIES TO SYSTEMATIC TESTING 65

selected 24 websites of companies listed among the top 100 of Fortune 500 companies.

For each website, we used R4
(Jensen et al. 2015) to record an execution and construct

the happens-before relation (the partial order). Table 5.1 shows the number of events

and the height of the happens-before graph for the websites. The results indicate that a

typical website has most of the events concentrated in a backbone of very large height,

proportional to the total number of events.

The theory shows that going below Θ(h) is impossible in this case unless d < 3; and

this can indeed lead to large hitting families: for example, our construction for h = 1000

and d = 4 corresponds to several million tests. However, not all schedules of the partial

ordering induced by the event handlers may be relevant: if two events are independent

(commute), one need not consider schedules which only di�er in their ordering. Therefore,

since hitting families are de�ned on an arbitrary partial order, not only on the happens-

before order, we can use additional information, such as (non-)interference of handlers, to

reduce the partial ordering �rst.

For web pages, we apply a simple partial order reduction to reduce the size of the input

trees in the following way. We say a pair of events race if they both access some memory

location or some DOM element, with at least one of them writing to this location or the

DOM element. Events that do not participate in races commute with all other events, so

they need not be reordered if our goal is to expose bugs.

R4
internally uses a race detection tool called EventRacer (Raychev, M. T. Vechev,

and Sridharan 2013) to over-approximate the set of racing events. In order to compute

hitting families, we construct a pruned partial order from the original tree of events. As

an example, for d = 3 and the simple O (nd−2) construction from Proposition 5.2, instead

of selecting a1 arbitrarily, we select it from the events that participate in races. We then

perform the left-to-right and right-to-left traversals as usual. In total, the number of

generated schedules is 2r , where r is the number of events participating in races. This

number can be signi�cantly smaller than 2n, as can be seen in the fourth (d = 3) and �fth

(d = 3 pruned) columns of Table 5.1.

66 CHAPTER 5. TESTING WITH HITTING FAMILIES

Chapter 6

Online Construction of Hitting
Families

As we have seen in the previous chapter, when the partial order is given explicitly and has

a known structure, such as an antichain or a tree, one can provide explicit combinatorial

constructions of d-hitting families of schedules; for antichains and trees, the size of a

d-hitting family can be exponentially smaller than the number of events. Unfortunately,

when testing a concurrent system implementation, it is unrealistic or impossible to know

the partial ordering up front, e.g., if the events are exposed incrementally as the program

executes, or to assume a speci�c “nice” structure. Thus, a challenge in systematic testing

is to come up with a small d-hitting family online (i.e., along with the execution) and for

an arbitrary partial ordering.

Recall that by Proposition 5.1 an arbitrary partial order with n elements has a d-hitting

family of sizeO (nd−1). Without going into details, we can say that the simple construction

given there can be extended into an online construction with the same upper bound. In

this chapter, we improve this bound to O (w2nd−2), where w is the maximal width of the

partial order during execution.
1

This may seem like a trivial improvement, but a lot of

e�ort is required to obtain it. Unfortunately, we do not have a matching lower bound;

however, we conjecture it is very close to w2nd−2
.

As we shall see in Section 6.3, the randomized scheduling algorithm PCTCP, which

is based on our online construction, works reasonably well in practice regardless of the

bound.

1
The upper bound ofw2nd−1

stated in Corollary 6.8 is for strong d-hitting families, which will be de�ned

shortly. As we shall see, every strong d-hitting family is a (d + 1)-hitting family, hence the di�erence in the

exponent.

67

68 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

6.1 Overview of the Approach
In this section, we informally introduce some of the notions used in the rest of the chapter,

and we present the PCTCP algorithm and demonstrate it on a simple example.

Example 6.1. Consider a distributed system with three nodes
2
: aHandler which processes

client requests, a Logger which logs transaction information, and a Terminator which

terminates the system. When the Handler processes a request message from the client,

it sends a log message to the Logger and a terminate message to the Terminator. When

the Terminator receives a terminate message, it sends a �ush message to the Logger. On

receiving a �ush, the Logger �ushes the logs (i.e., writes the logs into the database and

deallocates the �le descriptors) and sends an acknowledgment �ushed message back to the

Terminator. The messages by the Handler are sent concurrently to Logger and Terminator.
Hence, the �ush message sent by Terminator and the log message sent by Handler arrive

concurrently at the Logger. If the log message is processed before the terminate message,

the system behaves as expected. However, if the log message is delayed and the terminate
message is processed before the log message, the Logger accesses an invalid descriptor

and crashes.

Partial Order of Events and Online Chain Partitioning
PCTCP abstracts messages in the system as partially ordered events. The partial order

relation corresponds to the causality relation on the events in the execution. Note that

the causality relation between the events of a system depends on the semantics and the

guarantees of the system. In our example, the log and terminate messages depend on the

request message, as they are created in response to request. They are concurrent to each

other since they are sent to di�erent receivers and they will be processed concurrently.

PCTCP intercepts all events in a running system and maintains the poset of events

in an execution online as well as the current schedule. In each step, PCTCP selects an

unexecuted event and schedules it. The execution of this event can cause further events

in the system. These are intercepted and added to the partial order. The partial order of

events is maintained as a chain decomposition—a partition of the order into a set of chains.

Each chain is a linear ordering of events according to the partial order. When a new event

is intercepted, it is added to one of these chains (or put in a new chain by itself) by an

online chain partitioning algorithm.

The key to the theoretical properties of PCTCP is that the chain decomposition has a

small number of chains, bounded by a function of the width of the partial order. PCTCP

2
The example is adapted from Tasharo� et al. (2013), and it shows a simpli�ed version of a bug found in

a performance testing tool called Gatling (2011–2018).

6.1. OVERVIEW OF THE APPROACH 69

Input: number of events n, depth bound d
Data: chains // chain partition of events, the �rst d − 1 positions are initialized to null
Data: eventsAdded // number of events already added, initially 0

Data: priorityChangePt // vector of d − 1 distinct integers, initialized randomly between 1 and n
Data: schedule // the current execution

Procedure addNewEvent(e)
1 insert e into the poset using online chain partitioning (Alg. 2)

2 if a new chain is created then
3 insert the new chain into a random position between d and |chains | in chains
4 increment eventsAdded
5 if ∃j : eventsAdded = priorityChangePt[j] then
6 // assign a label to the event

7 e .label ← j

Procedure scheduleNextEvent()
8 while ∃j : chains[j] = α · e · α ′ ∧ e .isEnabled ∧ e .hasLabel ∧ e .label , j do
9 // we are at a priority change point

10 // note that chains[e .label] = null due to the labels being distinct

11 swap chains[j] and chains[e .label]

12 // select an enabled event from the chain with the highest priority

13 if ∃j : chains[j] = α · e · α ′ ∧ e .isEnabled then
14 e ← the event e corresponding to the highest index j s.t. chains[j] = α · e · α ′ ∧ e .isEnabled
15 schedule.append (e)
16 return e

Algorithm 1: PCTCP algorithm: adding new events and scheduling the next event

from the poset

forms chains of events based on the causal dependency relation between them. It inserts

the concurrently executable events into di�erent chains, which bounds the number of

chains to a function of the number of concurrently executable events. Therefore, the

theoretical bug detection guarantee of PCTCP is not tied to the number of nodes in

a system (some of which may be inactive in some parts of the execution) but to the

width of the partial order, i.e., the maximum number of simultaneously executable events.

(Note that since the partial order is revealed one element at a time, the chain partition is

constructed online. Thus, while there always exists a chain partition whose size is the

width of the ordering, we may not achieve this bound.) PCTCP uses an online chain

partitioning algorithm (Agarwal and Garg 2007) that guarantees that we use at most

O (w2) chains, where w is the (unknown) width of the partial order.

70 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

PCTCP Algorithm
PCTCP is a randomized scheduling algorithm for distributed programs. It takes as input

the maximum number n of messages to be scheduled and a parameter d which determines

the bug depth to be explored. It guarantees a lower bound on the probability of covering

every execution of depth d based on n, d , and the width of the underlying partial order.

PCTCP maintains a priority list of chains partitioning the partial order of events, where

lower numbers indicate lower priorities. During execution, the scheduler schedules an

event from a low priority chain only when all higher priority events are blocked (e.g.,

waiting on a synchronization action). In addition, the algorithm can change the priority of

a chain during execution when the execution meets one of d − 1 randomly chosen priority
change points in the execution. When the execution reaches a change point, the scheduler

changes the priority of the current chain to the priority value associated with the change

point.

The algorithm is given in Algorithm 1. It maintains three main data structures. The

�rst is a list of chains of events (called chains), which maintains a chain decomposition

of events seen so far, where each chain in the list is assigned a priority. The chain

decomposition data structure has two logical parts. The �rst d − 1 indices in the list are

reserved for chains with reduced priority and are all initialized to null. These positions

are populated later during execution when a priority change point is encountered. The

rest of the list maintains a prioritized list of chains, and higher indices in the list denote

higher priority.

The second data structure, the priority change points priorityChangePt, is a list of d −1

distinct integers picked randomly from the range [1,n] at the beginning of the algorithm

and used to randomly change the priority of certain chains at run time. The third data

structure, schedule, is a schedule of events executed so far.

The algorithm has two main procedures. Procedure addNewEvent inserts a new event

into the chain decomposition by either inserting it at the end of an existing chain or

creating a new chain, according to the online chain decomposition algorithm. If a new

chain is created, the new chain is assigned a random priority by inserting it into the

chain decomposition at a random position at or after the dth position. Additionally, this

procedure uses the variable eventsAdded to keep track of the number of events added

to the poset. Once eventsAdded becomes equal to priorityChangePt[j] for some j, the

procedure assigns a label j to the event that is being added to the poset. The label is used

to adjust the priority of the chain containing the event once the event becomes ready to

be scheduled.

Procedure scheduleNextEvent selects an enabled event and schedules it by appending

it to schedule. We say an event e is enabled (denoted by e .isEnabled in the pseudocode)

if it is not yet scheduled, but all of its predecessors have been scheduled. To select an

6.1. OVERVIEW OF THE APPROACH 71

(i) Initial poset:

request

Chains:
C1 = [request]

(ii) After processing request:

log

request

terminate

Chains:
C1 = [request, log]

C2 = [terminate]

(iii) After processing log:

log

request

terminate

Chains:
C1 = [request, log]

C2 = [terminate]

(iv) After processing terminate:

log

request

terminate �ush

Chains:
C1 = [request, log]

C2 = [terminate,�ush]

(v-vi) After processing �ush and �ushed:

log

request

terminate �ush �ushed

Chains:
C1 = [request, log]

C2 = [terminate,�ush,�ushed]

Figure 6.1: The poset of events in an execution and its decomposition into chains

enabled event, the procedure �rst adjusts the priorities of chains: if there is an enabled

event e carrying a label i (the predicate e .hasLabel is true in this case) that is placed

in chain c currently in position j , i in chains, the procedure moves c to position i in

chains. Once the priorities are adjusted, the procedure picks the highest priority chain

containing an enabled event, appends this event to schedule, and returns it to be executed.

All new events resulting from the execution are added to the chain decomposition (using

addNewEvent), and scheduleNextEvent is called again until n events are scheduled.

PCTCP on the Example
Figure 6.1 shows the online construction of the poset in our example for the bug depth

parameter d = 1. In each step, the event that is executed is crossed out. (i) Initially, the

poset contains only the request event in a single chain. The event is scheduled since it

is the only event in the system. (ii) Executing request causes two new events: log and

terminate. PCTCP extends the chain decomposition with these new events. Since the

events are concurrent, the width of the partial order at this point is 2, and the chain

partitioning algorithm needs to allocate a new chain. Say that in this example the chain

partitioning algorithm inserts log into the same chain with request and terminate into a

fresh chain. PCTCP now has two chains to select the next event from: C1 = [request, log]

and C2 = [terminate], and randomly decides the priority between them. We follow the

72 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

algorithm �rst with the ordering that prioritizesC1 overC2. In this case, PCTCP schedules

the log event. (iii) Processing log does not lead to more events, so we do not insert any

events into the poset. Since all the events in the highest priority chainC1 are executed, the

PCTCP scheduler schedules the next event in C2, i.e., the terminate event. (iv) Processing

this event creates a �ush even sent from the Terminator to the Handler. Since �ush depends

on terminate, PCTCP extends the chain C2 with �ush. (v) Since C1 still does not have

any events to schedule, PCTCP continues with C2 and schedules �ush. Similar to the

previous step, the �ushed message is inserted into the same chain. (vi) PCTCP schedules

the �ushed event and processes it. No more events are created and the execution ends.

Now assumeC2 was given a priority higher thanC1. In this case, PCTCP schedules the

terminate, �ush, and �ushed events in this order, before the log event. This hits the buggy

execution. Since each possible ordering between C1 and C2 is picked with probability 1/2,

we hit the bug with probability 1/2.

On the other hand, a naive random strategy that uniformly picks one of the enabled

events at each step would detect the same bug with probability 1/4. The random scheduler

would have to select terminate among the two concurrent events log and terminate, and

then select �ush among log and �ush to be able to hit the bug. As the length of the chain

in which �ush is inserted increases, the probability of naive random testing to hit the

bug decreases exponentially. On the other hand, the probabilities of detecting a bug with

PCTCP and naive random testing intuitively get closer to each other as the width of the

poset approaches the number of events in the system, i.e., when most of the newly added

events are concurrent to each other. In our experimental evaluation in Section 6.3, we

compare the performance of PCTCP and naive random testing on real-world benchmarks.

Priority Change Points

So far, we have ignored the priority change points, because exposing the bug in this

example requires a single ordering constraint between two events. Hence, this bug can

be detected without changing the initially assigned priorities of the chains. In a more

complex setting, the priorities of chains may need to change in order to hit a bug, and

this is handled by the priority change points.

Consider a modi�ed version of our example, where the bug is exposed not just with

the relative ordering of �ush→ log events, but also the ordering �ush→ log → �ushed.

Since two additional constraints trigger the bug, the PCTCP scheduler needs to be called

with the bug depth parameter d = 2, causing it to change chain priorities at one randomly

chosen priority change point. If initially C2 has a higher priority than C1 and the priority

change point is picked to be 5, then the �fth event added to the poset, i.e. �ushed, is

assigned a label, and after terminate and �ush events are executed, the priority of the

6.2. ONLINE STRONG HITTING SCHEDULERS 73

chain C2 is reduced. At this point, the log event from the currently higher priority chain

C1 is scheduled. There are no more events in C1 and PCTCP continues with scheduling

�ushed from C2, hitting the buggy ordering of events. The probability of hitting the bug

in this case is 1/10: the probability that C2 initially has higher priority than C1 is 1/2, and

the desired priority change point is picked with probability 1/5.

Guarantees
Having generated a d-tuple of event labels (x0, . . . ,xd−1), the PCTCP algorithm produces

a schedule which “strongly hits” this d-tuple. That is, PCTCP schedules an event labeled

xi at the last possible point in the execution before the events labeled xi+1, ...xd−1, thus

ensuring the events are ordered in the way they appear in the tuple. In addition, PCTCP

ensures a number of other ordering constraints: whenever an event x is concurrent with

xi and it is not forced to appear after xi due to a constraint x ≥ xj for some j, i ≤ j < d ,

PCTCP schedules x before xi . To guarantee these ordering constraints, PCTCP maintains

a list of reduced-priority chains which are ordered based on the order of event labels

in the d-tuple, e.g., the chain which has x0 as the �rst unexecuted event is inserted as

the �rst chain in the list of reduced-priority chains. When all the chains with initial

priorities either �nished or were reduced to a lower priority, the reduced-priority chains

are executed in an order which preserves the relative order of event labels in the tuple.

The crucial theoretical property we can ensure is that every possible d-tuple of events

is hit with probability at least 1/(w2nd−1). The proof of this result appears in the next

section.

6.2 Online Strong Hitting Schedulers

6.2.1 Scheduling Games
To formalize our scheduling task, we treat it as a scheduling game played by two players:

Program, who reveals a poset of elements in the upgrowing fashion—each element being

maximal when it appears—and Scheduler, who schedules the elements while adhering to

the partial order.

We describe and analyze two versions of the scheduling game. In the �rst version,

called online hitting for upgrowing posets, Scheduler maintains a family of schedules. In

each step Program introduces a single new element, maximal among the old elements, and

Scheduler responds by inserting the element into existing schedules without changing

the order of the old elements. Scheduler is allowed to duplicate schedules before inserting

the element. In this version of the game, Program has full freedom to select the relation

74 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

between the new and old elements, as long as the new element is maximal at the moment

it is introduced.

In the second version of the game we will introduce a structure called scheduling poset.
Thus, we call the game online hitting for scheduling posets. In this version, Scheduler

maintains a single partial schedule, which it extends by appending elements at its end.

Each time Scheduler schedules an additional element x , Program may extend the poset

with one or more new elements, again in the upgrowing fashion, but with an additional

restriction that each new element must be greater than x . This is to prevent Program in

adding an element that could have been scheduled earlier in the partial schedule.

In both versions of the game, Scheduler’s objective is to construct a strong d-hitting
family of schedules for a �xed parameter d ≥ 1, containing as few schedules as possible.

The strongd-hitting property roughly says that for everyd-tuple of elements (x0, . . . ,xd−1)
in the poset there is a schedule constructed by Scheduler in which xi appears at the last

possible moment before xi+1, . . . ,xd−1, that is, if an element y is scheduled after some xi ,
then it is scheduled there only because y ≥ xj for some j ≥ i . As we shall see, de�ning

the property rigorously for scheduling posets is rather tricky.

Online hitting for scheduling posets closely corresponds to the execution model of

distributed message passing programs. Scheduling an element corresponds to executing a

receive event, that is, choosing a message that can be received and executing its receive

handler. As a response, the handler may send new messages, inducing new receive events

that can only be executed later, and never before the current receive event. This version

of the game also straightforwardly generalizes the execution model of multithreaded

programs and the PCT scheduler from Burckhardt et al. (2010). In this setting, scheduling

an element corresponds to executing an instruction, to which the program responds by

“making available” the next instruction from the same thread.

Online hitting for upgrowing posets extends the results about (weak) hitting families

from Chapter 5, as well as the results about online dimension of upgrowing posets (Felsner

1997; Kloch 2007; Bosek, Felsner, et al. 2012). Recall, the (weak) d-hitting property requires

that for everyd-tuple (x0, . . . ,xd−1), if there exists a scheduleα that schedules the elements

in the order x0 <α . . . <α xd−1 (i.e., the tuple is admissible), then such a schedule also

exists in a d-hitting family of schedules. As we shall see, every strong d-hitting family is

a (d + 1)-hitting family. In the context of online dimension of upgrowing posets, online

dimension can be de�ned as the smallest size of a 2-hitting family achievable by Scheduler.

6.2.2 Online Hitting for Upgrowing Posets

In the �rst version of the scheduling game, Program is arbitrarily extending a poset with

new elements, and Scheduler is maintaining a strong d-hitting family of schedules for the

6.2. ONLINE STRONG HITTING SCHEDULERS 75

poset in each step, while trying to keep the number of schedules as small as possible. We

start by precisely de�ning the objects constructed by each player.

De�nition 6.1 (upgrowing poset). An upgrowing poset of size n is a sequence of posets

P = (Pk)0≤k≤n that satis�es the following conditions: (1) P0 = ∅, (2) Pk+1 = Pk ∪ {x } for

k < n, where x is a new elements such that x < Pk , and (3) x is maximal in Pk+1, that is,

for every y ∈ Pk+1, y ≯ x .

De�nition 6.2 (strong hitting family). Let d ≥ 1 be a �xed integer.

• Given a poset P, we say a schedule α for P strongly hits a d-tuple of elements

(x0, . . . ,xd−1) if for every y ∈ P, y ≥α xi in α for some i ∈ {0, . . . ,d − 1} implies

y ≥ xj in P for some j ≥ i .

• We call a set of schedules F a strong d-hitting family for P if for every d-tuple of

elements in P there is a schedule in F that strongly hits it.

• Given an upgrowing poset P = (Pk)0≤k≤n of size n, we call a sequence of sets

of schedules F = (Fk)0≤k≤n an online strong d-hitting family for P if each Fk is

a strong d-hitting family for Pk , and each schedule in Fk+1 is an extension of a

schedule in Fk .

Remark 3. Strong hitting families are a stronger version of hitting families de�ned in

Chapter 5, hence the name. Given a poset P and d ≥ 1, a d-hitting family F is a set of

schedules such that every admissible tuple (x0, . . . ,xd−1) in P is hit by a schedule α ∈ F ,

that is, ordered by α as xo <α . . . <α xd−1. Recall, a tuple is admissible if it is hit by at

least one schedule (not necessarily from F).

Every strong d-hitting family is a (d+1)-hitting family. To show this, let F be a strong

d-hitting family, and let (x0, . . . ,xd) be an admissible (d + 1)-tuple. There is a schedule

α ∈ F that strongly hits (x1, . . . ,xd). We show that α hits (x0, . . . ,xd). Suppose it does

not, and let i, j be indices such that 0 ≤ i < j ≤ d and xi ≥α xj . Since α strongly hits

(x1, . . . ,xd) and j ≥ 1, there exists j′ ≥ j such that xi ≥ xj ′. But then, since i < j′, the

tuple cannot be hit by any schedule, contradicting the admissibility.

The results of Felsner (1997) and Kloch (2007) (see also the survey by Bosek, Felsner, et al.

(2012)) show that there is a close connection between constructing a strong 1-hitting

family and an adaptive chain covering of an upgrowing poset. In the adaptive chain

covering game, Scheduler constructs a decomposition of the poset into a (not necessarily

disjoint) union of chains. That is, whenever Program adds a new element, Scheduler

places it into several chains. Later on, the element may be removed from some chains to

better accommodate new elements, but it must always remain in at least one chain. We

formalize these requirements in the following de�nition.

76 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

De�nition 6.3 (adaptive chain covering). Let P = (Pk)0≤k≤n be an upgrowing poset

of size n and Λ a set of chain colors. A sequence of functions C = (Ck)0≤k≤n, where

Ck : Pk → 2
Λ

, is called an adaptive chain covering for P if the following conditions hold

for all 0 ≤ k ≤ n and x ∈ Pk : (1) Ck+1(x) ⊆ Ck (x) for k < n, (2) Ck (x) , ∅, and (3) the set

{x ∈ Pk | λ ∈ Ck (x)} is a chain for every λ ∈ Λ.

The result of Felsner and Kloch can be stated as follows. Let hit(w) be the least integer m
such that Scheduler has a strategy for strong 1-hitting that uses at mostm schedules, and

let adapt(w) be the least integer m such that Scheduler has a strategy for adaptive chain

covering that uses at mostm chain colors, both on upgrowing posets of width at most w .

Theorem 6.1 (Felsner, Kloch). hit(w) = adapt(w).

Theorem 6.1 was never explicitly stated by Felsner and Kloch. In fact, they prove a

stronger result that dim(w) = adapt(w), where dim(w) is the maximal online dimension

of upgrowing posets of width at most w . Felsner’s proof of the stronger claim (Felsner

1997) originally had a �aw that was later corrected by Kloch (2007). In his correction,

Kloch isolates strong 1-hitting under the name “property (?)” as the key property, and

essentially shows dim(w) = hit(w) and hit(w) = adapt(w). We emphasize the latter in

Theorem 6.1 because Felsner and Kloch prove this claim by showing that a strategy for

adaptive chain covering can be straightforwardly converted into a strategy for strong

1-hitting and vice versa. Thus, strong 1-hitting and adaptive chain covering are essentially

the same problems.

In this chapter, we want to bound the number of schedules Scheduler needs to use

to achieve strong d-hitting for arbitrary d ≥ 1. Let hitd (w,n) be the least integer m
such that Scheduler has a strategy for strong d-hitting that uses at mostm schedules on

upgrowing posets of width at mostw and size at most n. Our main result on online hitting

for upgrowing posets is the following theorem.

Theorem 6.2. hitd (w,n) ≤ adapt(w) ·
(

n
d−1

)
(d − 1)! .

Proof. Let P = (Pk)0≤k≤n be an upgrowing poset of size n and width at most w , and let

C = (Ck)0≤k≤n be an adaptive chain covering for P withm chain colors. We show how to

transform C step by step into an online strong d-hitting family F = (Fk)0≤k≤n with at

mostm ·
(

n
d−1

)
(d − 1)! schedules.

The schedules in families Fk will be indexed by d-tuples (λ,n1, . . . ,nd−1), where λ ∈ Λ
is a chain color, and ni ∈ {1, . . . ,n} for 1 ≤ i < d are distinct numbers. We do not

require the indexing scheme to be injective, that is, multiple indices may denote a single

schedule. Intuitively, the numbers n1, . . . ,nd−1 serve to single out elements x1, . . . ,xd−1

added to the poset in steps n1, . . . ,nd−1, respectively. The schedule α = αλ,n1,...,nd−1
will be

6.2. ONLINE STRONG HITTING SCHEDULERS 77

constructed so that it strongly hits (x0,x1, . . . ,xd−1) for every element x0 with λ ∈ Ck (x0).
More precisely, the construction will satisfy the following invariant: For 0 ≤ k ≤ n, let

xi1, . . . ,xil with i1 < . . . < il be all the singled-out elements in step k , and let x0 be an

element such that λ ∈ Ck (x0). The schedule α strongly hits (x0,xi1, . . . ,xil).
Clearly, a family F0 consisting of a single empty schedule satis�es the invariant. Let x

be the element added to Pk in step k > 0, and let Fk−1 be a family of schedules that satis�es

the invariant in step k − 1. We show how to extend the schedule α = αλ,n1,...,nd−1
∈ Fk−1

with x to obtain a schedule α ′ = α ′
λ,n1,...,nd−1

∈ Fk so that Fk satis�es the invariant in step

k . We distinguish several cases:

1. If k = ni for some i ∈ {1, . . . ,d − 1}, then x needs to be singled out: we de�ne xi := x .

Let xi1, . . . ,xil with i1 < . . . < il be all previously singled-out elements. If l = 0 or i > il
or x ≥ xil , we schedule x as the last element in α ′. (This is possible because x is maximal

in Pk). Otherwise, let ij be the least index such that i < ij and x is incomparable with

all of xi j ,xi j+1
, . . . ,xil . We schedule x right before xi j . (This is possible because of the

invariant in step k −1: if x ≥ y for some y ≥α xi j , then x ≥ y ≥ xi j ′ for some j ≤ j′ ≤ l .)

To see that the invariant holds for α ′, let x0 be an element such that λ ∈ Ck (x0) and

set i0 := 0. If x ≥α ′ xi j for some j ∈ {0, . . . , l }, then either i < ij and x ≥ xi j ′ for some

j′ ≥ j by construction, or i > ij and x ≥ xi trivially. Since x is singled out, we also need

to inspect the case when y ≥α ′ x for some y ∈ Pk−1. By construction, x immediately

precedes some previously singled-out element xi j such that i < ij . Therefore, y ≥α ′ xi j ,
and by the invariant in step k − 1, y ≥ xi j ′ for some j′ ≥ j.

2. If x is not to be singled out and λ ∈ Ck (x), let again xi1, . . . ,xil with i1 < . . . < il
be all previously singled-out elements. If l = 0 or x ≥ xil , we schedule x as the last

element in α ′. Otherwise, let ij be the least index such that x is incomparable with all

of xi j ,xi j+1
, . . . ,xil . We schedule x right before xi j .

As before, to see that the invariant holds for α ′, let x0 be an element such that λ ∈ Ck (x0)
and set i0 := 0. Assume x ≥α ′ xi j for some j ∈ {0, . . . , l }. If j = 0, then x ≥ xi0 because

both elements are in chain λ. If j > 0, by construction there exist j′ ≥ j such that

x ≥ xi j ′ . Since λ ∈ Ck (x), we also need to inspect the case when y ≥α ′ x for some

y ∈ Pk−1. By construction, x immediately precedes some previously singled-out

element xi j . Therefore, y ≥α ′ xi j , and by the invariant in step k − 1, y ≥ xi j ′ for some

j′ ≥ j.

3. Finally, if x is not to be singled out and λ < Ck (x), we schedule x right after the

last y such that y ≤ x . To show the invariant, let xi1, . . . ,xil with i1 < . . . < il be

all previously singled-out elements, let x0 be an element such that λ ∈ Ck (x0), and

set i0 := 0. If x ≥α ′ xi j for some j ∈ {0, . . . , l }, then we also have y ≥α xi j . Hence

78 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

x ≥ y ≥ xi j ′ for some j′ ≥ j.

Now let (x0, . . . ,xd−1) be ad-tuple inPk . Since C is an adaptive chain covering, there exists

λ ∈ Ck (x0). Moreover, there exist steps n1, . . . ,nd−1 in which the elements x1, . . . ,xd−1

were added to Pk . Because of the invariant, the schedule αλ,n1,...,nd−1
∈ Fk strongly hits

the tuple. �

6.2.3 Online Hitting for Scheduling Posets
In the second version of the scheduling game, Scheduler maintains a single partial schedule

of the upgrowing poset presented by Program. Scheduler takes a turn by scheduling

an element x that is minimal among the non-scheduled elements. Program responds by

introducing zero or more elements y such that x < y. New elements are introduced in the

upgrowing fashion, that is, each element y is maximal in the step it is introduced.

There are two key complications in this version of the game. First, there is a mutual

dependency of the upgrowing poset constructed by Program and the schedule constructed

by Scheduler. And second, since only one schedule is constructed, it is unclear how to

de�ne strong hitting families. We deal with the �rst complication �rst: we upgrade the

upgrowing poset to a new structure called scheduling poset that encodes all possible ways

Scheduler can extend the schedule and Program can extend the poset.

De�nition 6.4 (scheduling poset). A scheduling poset is a pair SP = (S,P), where

S is a set of schedules, each schedule α ∈ S has an associated number nα ≥ 0, and

P = {Pα ,k | α ∈ S, 0 ≤ k ≤ nα } is a set of posets satisfying the following conditions.

Initial conditions:

(1) ϵ ∈ S
(2) Pϵ,0 = ∅

Extending the schedule:

(3) α · x ∈ S if and only if α ∈ S and x ∈ min(Pα ,nα\ α)
(4) Pα ·x ,0 = Pα ,nα

Extending the poset:

(5) Pα ,k+1 = Pα ,k ∪ {x }, where k < nα and x < Pα ,k
(6) x is maximal in Pα ,k+1, that is, for every y ∈ Pα ,k+1, y ≯ x
(7) x is greater than the last scheduled element, that is, if α = α ′ · y, then y < x

The numbers nα in De�nition 6.4 represent the number of new elements Program adds

into the poset after the Scheduler extends the schedule to α . The poset Pα ,k for 0 ≤ k ≤ nα
is the poset in the k-th step after scheduling α . We will also be referring to the cumulative

6.2. ONLINE STRONG HITTING SCHEDULERS 79

step for α and k : Let l be the length of α , and let αi for 0 ≤ i ≤ l denote the pre�x of α of

length i . The cumulative step for α and k is the number t = nα0
+ . . . + nαl−1

+ k . It is not

di�cult to see that a scheduling poset in cumulative step t has precisely t elements.

Note that De�nition 6.4 of scheduling posets never explicitly requires a schedule α to

extend a pre�x of Pα ,k . However, this fact can easily be derived from the de�nition.

Lemma 6.3. Let SP = (S,P) be a scheduling poset. For every α ∈ S and k such that
0 ≤ k ≤ nα , α is a schedule of a pre�x of Pα ,k .

Proof. The claim clearly holds for α = ϵ and all k such that 0 ≤ k ≤ nϵ . Assume the claim

holds for some α ∈ S and all k such that 0 ≤ k ≤ nα and let x ∈ min(Pα ,nα\ α). Since

Pα ·x ,0 = Pα ,nα , and since x is minimal in Pα ,nα\α , there exists no y ∈ Pα ·x ,0 \α ·x such that

y ≤ x . Therefore, α · x is a schedule of a pre�x of Pα ·x ,0. Now assume α · x is a schedule

of a pre�x of Pα ·x ,k for some k such that 0 ≤ k < nα ·x . Let Pα ·x ,k+1 = Pα ·x ,k ∪ {y}. Since y
is maximal in Pα ·x ,k+1, we cannot have y ≤ x . (This also follows from x < y.) Therefore,

α · x is a schedule of a pre�x of Pα ·x ,k+1. The claim now follows by sub-induction on k
and induction on α . �

As with online hitting for upgrowing posets, our result for scheduling posets will be

to show how to convert a strategy for adaptive chain covering to a strategy for online

hitting for scheduling posets. Therefore, we need to extend the de�nition of adaptive

chain covering to scheduling posets.

De�nition 6.5 (adaptive chain covering for scheduling posets). Let Λ be a set of chain
colors, and SP = (S,P) a scheduling poset. A set of functions C = {Cα ,k : Pα ,k →

2
Λ | α ∈ S, 0 ≤ k ≤ nα } is called an adaptive chain covering for SP if the following

conditions hold for all α ∈ S, 0 ≤ k ≤ nα , and x ∈ Pα ,k : (1) Cα ,k+1(x) ⊆ Cα ,k (x) if k < nα ,

(2) Cα ·y,0(x) = Cα ,nα (x), (3) Cα ,k (x) , ∅, and (4) the set {x ∈ Pα ,k | λ ∈ Cα ,k (x)} is a chain

for every λ ∈ Λ.

By de�ning scheduling posets, we have solved the �rst of the two complications mentioned

earlier. We have also solved part of the second complication: given a scheduling poset

SP = (S,P), a strong d-hitting family will be some subset F ⊆ S. But how do we de�ne

the strong d-hitting property? Note that we cannot quantify over d-tuples (x0, . . . ,xd−1),
because as soon as we �x a domain for some d-tuple, say Pα ,k , we have �xed the schedule

α , and this schedule does not necessarily hit the tuple. We deal with this complication

by employing a trick from Burckhardt et al. (2010): instead of tuples, we quantify over

auxiliary functions called labelings that indirectly select the tuples for us.

De�nition 6.6 (labeling). Let SP = (S,P) be a scheduling poset, d ≥ 1 a �xed integer,

and L = {x0, . . . ,xd−1} an ordered set of labels. A d-labeling for SP is a set of partial

80 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

functions L = {Lα ,k : L 9 Pα ,k | α ∈ S, 0 ≤ k ≤ nα } satisfying the following conditions

for every α ∈ S and 0 ≤ k ≤ nα :

(1) Lα ,k is injective.

(2) Lα ·x ,0 = Lα ,nα for x ∈ min(Pα ,nα\α), and if k < nα , then dom(Lα ,k) ⊆ dom(Lα ,k+1)
and Lα ,k+1(xi) = Lα ,k (xi) for every xi ∈ dom(Lα ,k).

(3) If k < nα and Pα ,k+1 = Pα ,k ∪ {x }, then dom(Lα ,k+1) \ dom(Lα ,k) contains at most

one label xi , for which Lα ,k+1(xi) = x .

(4) For every adaptive chain covering C for SP, there exists a chain color λ such

that λ ∈ Cα ,k (Lα ,k (x0)) for every schedule α and step 0 ≤ k ≤ nα in which

x0 ∈ dom(Lα ,k).

When α and k are clear from the context, we usually write xi instead of Lα ,k (xi).

Intuitively, the conditions in De�nition 6.6 require the labels to be assigned to distinct

elements; they require them to be stable, and only assigned to newly added elements.

Condition 4 requires that for every adaptive chain covering there is a chain that contains

x0 irrespective of the way we schedule the elements.

De�nition 6.7 (strong hitting family for scheduling posets). Let SP = (S,P) be a

scheduling poset, d ≥ 1 a �xed integer, L a d-labeling for SP, and α ∈ S a schedule.

• We say α partially hits Lα ,k for 0 ≤ k ≤ nα if for every xi ∈ dom(Lα ,k) scheduled

by α and every x ∈ Pα ,k such that either x ≥α xi or x is not scheduled, there exists

xj ∈ dom(Lα ,k) with j ≥ i such that x ≥ xj in Pα ,k . We say α partially hits L if it

partially hits Lα ,k for every 0 ≤ k ≤ nα .

• If α is complete, that is, it schedules the whole Pα ,nα , and it partially hits L, we say

it strongly hits L.

• We say L is complete if for each of its strongly hitting schedules α all labels are

assigned in Pα ,nα , that is, Lα ,nα is a total function.

• A set of complete schedules F ⊆ S is a strong d-hitting family for SP if for every

complete d-labeling L for SP there is a schedule α ∈ F that strongly hits L.

The following lemma shows that in order to maintain partial hitting, it su�ces for Sched-

uler to preserve the property on their move. In other words, Program cannot break the

property by cleverly introducing a new element.

6.2. ONLINE STRONG HITTING SCHEDULERS 81

Lemma 6.4. Let SP = (S,P) be a scheduling poset, d ≥ 1 a �xed integer, L a d-labeling
for SP, and α ∈ S a schedule. The following statements are equivalent:

(1) α partially hits L,

(2) α partially hits Lα ,k for some 0 ≤ k ≤ nα ,

(3) α partially hits Lα ,0.

Proof. Clearly (1) implies (2). In order to show that (2) implies (3), assume α partially

hits Lα ,k for some k > 0. We show α partially hits Lα ,k−1 and conclude by downward

induction on k . Let Pα ,k = Pα ,k−1 ∪ {x }, let xi ∈ dom(Lα ,k−1) be an element scheduled by

α , and let y ∈ Pα ,k−1 be an element such that either y ≥α xi or y is not scheduled. Since α
partially hits Lα ,k , there exists xj ∈ dom(Lα ,k) with j ≥ i such that y ≥ xj . If xj ∈ Pα ,k−1,

we are done. Suppose xj < Pα ,k−1; then xj = x . But then x < y in Pα ,k , contradicting the

maximality of x .

We show that (3) implies (1) by (upward) induction on k . The statement (3) is the

base case. Assume α partially hits Lα ,k for some k < nα , let Pα ,k+1 = Pα ,k ∪ {x }, let

xi ∈ dom(Lα ,k+1) be an element scheduled by α , and let y ∈ Pα ,k+1 be an element such

that either y ≥α xi or y is not scheduled. Note that xi ∈ Pα ,k . If y ∈ Pα ,k , we are done;

otherwise y = x . Since α schedules xi , we know that α = α ′ · z for some z ∈ Pα ,k , and

moreover z ≥α xi . By the induction hypothesis, there exists xj ∈ dom(Lα ,k) with j ≥ i
such that z ≥ xj . Since y = x > z, by transitivity we have y ≥ xj . �

In contrast to Theorem 6.2, which states the result for online hitting for upgrowing posets

using quantities hitd (w,n) and adapt(w), we state the result in this subsection in a more

operational way. To that end, we de�ne an auxiliary notion of schedule indices: Given a

scheduling poset SP = (S,P) of size at most n, a �xed integer d ≥ 1, and an adaptive

chain covering C for SP with the set of chain colors Λ, we say a schedule index is a

d-tuple of the form (λ,n1, . . . ,nd−1), where λ ∈ Λ is a chain color, and ni ∈ {1, . . . ,n}
for 1 ≤ i ≤ n are distinct numbers. Intuitively, given a labeling L and a schedule α , the

numbers ni represent the cumulative steps in which L assigns xi to new elements in the

poset, and λ represents the color of a chain containing x0. If L assigns labels in this way

by following α , we say L conforms to (λ,n1, . . . ,nd−1) on α .

Lemma 6.5. Let SP = (S,P) be a scheduling poset of size at most n, d ≥ 1 a �xed integer,
and C an adaptive chain covering for SP. For every schedule index (λ,n1, . . . ,nd−1) there is
a schedule α = αλ,n1,...,nd−1

such that α strongly hits every complete d-labeling that conforms
to (λ,n1, . . . ,nd−1) on α .

82 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

Proof. Let (λ,n1, . . . ,nd−1) be a schedule index. We construct the schedule α = αλ,n1,...,nd−1

inductively. The invariant maintained during the construction is that α partially hits

every labeling that conforms to (λ,n1, . . . ,nd−1) on α .

Base case: α = ϵ . Since Pϵ,0 = ∅, ϵ trivially hits Lϵ,0 for any labeling L. By Lemma 6.4,

ϵ partially hits every labeling L.

Induction step. Assume we have constructed some α = αλ,n1,...,nd−1
that satis�es the

invariant. If all elements have been scheduled, we are done. Otherwise, we show how to

select x ∈ min(Pα ,nα\ α) to extend α into α ′ = α · x without breaking the invariant. There

are three cases:

1. There exists x ∈ min(Pα ,nα\α) such that λ < Cα ,nα (x) and x was not added in cumulative

step ni for any 1 ≤ i < d . We extend α with any such x .

2. Otherwise, there exists x ∈ min(Pα ,nα\ α) such that λ ∈ Cα ,nα (x) and x was not added

in cumulative step ni for any 1 ≤ i < d . We extend α with any such x .

3. Otherwise, every x ∈ min(Pα ,nα\α) was added in cumulative step ni for some 1 ≤ i < d .

We extend α with x added in step ni for the least index i .

Let L be a labeling conforming to (λ,n1, . . . ,nd−1) on α ′. Since it also conforms to

(λ,n1, . . . ,nd−1) on α , it is partially hit by α . We may have broken the partial hitting

property if we have extended the schedule with x0 in the second case, or with xi for

1 ≤ i < d in the third case.

In the second case, let y be some element that is not yet scheduled, and let y′ ∈
min(Pα ,nα\ α) be an element such that y′ ≤ y (such y′ always exists). Since we are in the

second case, either λ ∈ Cα ,nα (y
′), implying y ≥ y′ ≥ x0, or y′ = xj for some 1 ≤ j < d . In

either case, y ≥ xj for some 0 ≤ j < d .

In the third case, let y be some element that is not yet scheduled, and again, let

y′ ∈ min(Pα ,nα\ α) be an element such that y′ ≤ y. Since we are in the third case, y′ = xj
for some 1 ≤ j < d . Since we have extended α with xi having the least index i , we have

j ≥ i .
This shows that α ′ partially hits Lα ′,0. By Lemma 6.4, α ′ partially hits L. �

Lemma 6.6. Let SP = (S,P) be a scheduling poset of size at most n, d ≥ 1 a �xed integer,
and C an adaptive chain covering forSP. For every complete d-labelingL there is a schedule
index (λ,n1, . . . ,nd−1) such that L conforms to (λ,n1, . . . ,nd−1) on αλ,n1,...,nd−1

.

Proof. Let L be a complete d-labeling, and let λ be a chain color such that λ ∈ Cα ,k (x0)
for every schedule α and step 0 ≤ k ≤ nα in which x0 is de�ned. Note that we can

repeat the construction from the proof of Lemma 6.5 with the knowledge of λ and the

6.2. ONLINE STRONG HITTING SCHEDULERS 83

actual elements x1, . . . ,xd−1 selected by L instead of the knowledge of the schedule index.

During the construction, we take note of cumulative steps ni in which L assigns labels xi .
By the invariant, the schedule α obtained at the end strongly hits L. Since L is complete,

all labels have been assigned at the end, hence Cα ,nα (x0) is a well-de�ned set of chain

colors containing λ, and ni are well-de�ned numbers for all 1 ≤ i < d . By construction,

α = αλ,n1,...,nd−1
and L conforms to (λ,n1, . . . ,nd−1) on α . �

Theorem 6.7. Let SP = (S,P) be a scheduling poset of size at most n, d ≥ 1 a �xed
integer, and C an adaptive chain covering for SP. The set

F = {αλ,n1,...,nd−1
| (λ,n1, . . . ,nd−1) is a schedule index for SP}

is a strong d-hitting family for SP. If C uses m chain colors, then F has size at most
m

(
n

d−1

)
(d − 1)! .

Proof. Let L be a complete d-labeling for SP. By Lemma 6.6, there exists a schedule

index (λ,n1, . . . ,nd−1) such that L conforms to (λ,n1, . . . ,nd−1) on α = αλ,n1,...,nd−1
. By

Lemma 6.5, α strongly hits L, and by de�nition, α ∈ F . Finally, the size of F is bounded

by the total number of schedule indices. �

6.2.4 Online Chain Partitioning
Our two main results, Theorem 6.2 and Theorem 6.7, show that Scheduler can construct

strong hitting families of bounded size provided they have a strategy for adaptive chain

covering. Adaptive chain covering is essentially an online decomposition of an upgrowing

poset into a (not necessarily disjoint) union of chains. In particular, any strategy for

online chain partitioning, which decomposes the poset into a disjoint union of chains, is a

strategy for adaptive chain covering.

By Dilworth’s theorem (Dilworth 1950), the optimal chain partition of a poset of width

w uses w chains. In the online setting, the optimal partition may not be achievable. As

shown by Felsner (1997), for upgrowing posets of width at most w , Scheduler always has

a strategy for chain partitioning that uses at most

(
w+1

2

)
chains, and Program can force

Scheduler to use

(
w+1

2

)
chains. This bound translates into an upper bound for adapt(w),

the minimal number of chains needed for adaptive chain covering over all upgrowing

posets of width at most w . By plugging the bound into our main theorems, we can bound

the size of strong hitting families.

Corollary 6.8. Given d ≥ 1, for any upgrowing or scheduling poset of width at mostw and
size at most n, there is a strong d-hitting family of schedules of size at most

(
w+1

2

) (
n

d−1

)
(d −

1)! ≤ w2nd−1.

84 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

Input: A new element y
Data: Sets of chains B1, . . . ,Bw
Invariant: ∀i : 1 ≤ i ≤ w =⇒ |Bi | ≤ i ,
Invariant: ∀i : 1 ≤ i ≤ w =⇒ Last(Bi) := {x | α · x ∈ Bi } is an antichain

Procedure addNewElement(y)
1 for i = 1 tow do
2 if (∃α ′ · x ∈ Bi : x < y) or |Bi | < i then
3 α ← α ′ · x if it exists, or a new empty chain otherwise

4 α ← α · y
5 if i > 1 then
6 (Bi−1,Bi) ← (Bi \ {α },Bi−1 ∪ {α })

7 return

Algorithm 2: Chain partitioning algorithm: adding a new element into a chain

There is a surprisingly elegant algorithm for online chain partitioning given by Agarwal

and Garg (2007), listed as Algorithm 2. The algorithm is optimal in the sense that it uses

at most

(
w+1

2

)
chains for upgrowing posets of width at most w . The algorithm maintains

w sets of chains B1, . . . ,Bw such that each Bi contains at most i chains. Moreover, de�ne

Last(Bi) := {x | α · x ∈ Bi }. The algorithm maintains the invariant that Last(Bi) is an

antichain for every 1 ≤ i ≤ w . Let y be the new maximal element added to the poset.

The algorithm �nds the least index i such that y is comparable with some x ∈ Last(Bi) or

Bi has less than i chains. (Such i exists, otherwise Last(Bw) ∪ {y} is an antichain of size

w + 1.) Let α = α ′ · x if y is comparable with x for α ′ · x ∈ Bi , otherwise let α = ϵ . The

algorithm extends α to α · y in Bi . If i > 1, the algorithm swaps the chains in Bi−1 and

Bi so that in the next step B′i−1
= Bi \ {α · y} and B′i = Bi−1 ∪ {α · y}. It is not di�cult to

see that the invariant of the algorithm is preserved (Agarwal and Garg 2007). Notice that

the width of the poset w need not be known upfront. As the algorithm inserts elements

to the poset, it creates new chains as needed. By means of the invariant enforcing each

Last(Bi) to be an antichain, the largest set of chains Bw is at most of size as the width of

the poset, w .

Note that since adaptive chain covering allows decompositions of the poset into

non-disjoint chains, it is possible that there exist strategies which use fewer than

(
w+1

2

)
chains. Unfortunately, no better strategies than online chain partitioning are currently

known (Bosek, Felsner, et al. 2012). However, in case of future progress on adaptive chain

covering, any new bounds on adapt(w) will automatically translate into new bounds on

the size of online strong hitting families.

6.2. ONLINE STRONG HITTING SCHEDULERS 85

6.2.5 PCTCP—PCT with Chain Partitioning
We now relate our algorithm PCTCP (Probabilistic Concurrency Testing with Chain Par-
titioning), introduced as Algorithm 1 and described informally in Sec. 6.1, to the results

discussed in Sec. 6.2.3 and Sec 6.2.4. PCTCP incorporates Agarwal and Garg’s online

chain partitioning algorithm into the construction of strong hitting families for scheduling

posets. However, instead of constructing the whole strong hitting family, it selects a

scheduling index uniformly at random and constructs only the corresponding schedule.

Therefore, it provides a bound on the probability of hitting a bug of depth d :

Corollary 6.9. Given a scheduling poset SP of size at most n and width at most w , a
schedule constructed by PCTCP strongly hits a d-complete labeling for SP with probability
at least 1/(w2nd−1).

To pick a scheduling index uniformly at random, PCTCP uses a priority-based randomized

scheduler similar to PCT—the randomized scheduler for multithreaded programs by

Burckhardt et al. (2010). The PCTCP scheduler assigns a priority uniformly at random to

each chain as it is constructed and added to the partition on-the-�y. It then, at each step

of computation, schedules an enabled event from a chain with the highest priority. An

event is enabled if it is not scheduled and all of its predecessors have been scheduled. The

priority of a chain may change during the execution when it passes a priority change point.
These points are steps in an execution with associated priorities which are lower than the

priorities assigned to chains initially. When the execution reaches a priority change point,

the scheduler adjusts the priority of the corresponding chain to the priority associated

with the change point. More speci�cally, given inputs d and n, PCTCP assigns priority

values d,d + 1, . . . ,d +w2 − 1 to chains which are constructed dynamically (we can have

up to w2
chains). It also picks initially d − 1 random priority change points n1, . . . ,nd−1 in

the range [1,n], where each ni has an associated priority value of i . Combining the initial

priority assignments and the priority change points, PCTCP generates a schedule index

(λ,n1, . . . ,nd−1), where λ is the chain with the lowest initial priority.

We argue that PCTCP is a natural generalization of PCT for multithreaded pro-

grams (Burckhardt et al. 2010). The main di�erence is that PCTCP uses a chain partition

constructed on-the-�y, and PCT uses a chain partition provided by threads. Hence the

di�erence in the probabilistic guarantee is 1/(w2nd−1) for PCTCP versus 1/(knd−1) for

PCT on a program with k threads.

Another di�erence between the two is in the phrasing of the objective of the generated

schedule. PCTCP’s objective is to “strongly hit a labeling,” whereas PCT’s objective is

to “satisfy a directive that guarantees a bug.” PCT’s directive for a given d ≥ 1 is a

tuple D = (L,A0,x0, . . . ,Ad−1,xd−1), where L is a labeling whose set of labels L can

contain labels other than x0, . . . ,xd−1, and each Ai ⊆ L is a set of labels. A schedule α

86 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

satis�es a directive if it schedules all a ∈ Ai before xi , for every 0 ≤ i < d , and schedules

x0, . . . ,xd−1 in the order x0 <α . . . <α xd−1. Thus, a directive represents a set of additional

ordering constraints a schedule should satisfy in order to expose a bug. The constraints

are implicitly assumed to be consistent with the program’s partial order.

It is not di�cult to see that the strong hitting property subsumes PCT’s directives.

Let D = (L,A0,x0, . . . ,Ad−1,xd−1) be a directive, and assume a schedule α strongly

hits (x0, . . . ,xd−1). We �rst show that the elements x0, . . . ,xd−1 are ordered as x0 <α
. . . <α xd−1. Suppose they are not, that is, suppose xj ≥α xi for some j < i . By the

strong hitting property, there exists j′ ≥ i such that xj ≥ xj ′. But then, since j < j′, the

directive is inconsistent with the partial order. We conclude that α correctly schedules

x0 <α . . . <α xd−1. Suppose now that a ≥α xi for some 0 ≤ i < d and a ∈ Ai . By the

strong hitting property, there exists j ≥ i such that a ≥ xj . Again, since i ≤ j , according to

the directive the element a should be scheduled before xj , which is inconsistent with the

partial order. We conclude all a ∈ Ai are scheduled before xi for every 0 ≤ i < d . Thus, α
satis�es the directive D.

6.3 Experimental Evaluation

6.3.1 P# Benchmarks
We implemented PCTCP

3
to randomly test distributed applications written in Microsoft’s

P# framework
4

for building asynchronous message passing systems (Deligiannis, Don-

aldson, et al. 2015; Deligiannis, McCutchen, et al. 2016; Mudduluru et al. 2017). A P#

program consists of a number of state machines that communicate by sending and receiv-

ing messages. Each P# machine executes a message handling loop and runs in parallel

with other machines. Handling of a message can result in a state transition, creating new

machines, sending messages to other machines, or updating local �elds. The systematic

testing engine of P# instruments a program at synchronization points, which are send,

create-machine, and receive events. Upon execution of one of these events, the P# runtime

calls the scheduler, which blocks the current machine and releases a possibly di�erent

machine for execution. Therefore, a machine may be interrupted in the middle of handling

an incoming message in case the handling causes sending a new message or creating a

new machine.

The original P# runtime does not keep track of causal dependencies between events,

and thus does not have an explicit notion of chains. At synchronization points, the sched-

uler only knows the set of currently executing machines, and chooses one of them as the

3
The source code is available at https://gitlab.mpi-sws.org/fniksic/PSharp/tree/PCTCP.

4https://github.com/p-org/PSharp

https://gitlab.mpi-sws.org/fniksic/PSharp/tree/PCTCP
https://github.com/p-org/PSharp

6.3. EXPERIMENTAL EVALUATION 87

Table 6.1: Characteristics of benchmarks (LOC includes comments and blank lines, “Type

of bug” refers to known bugs)

Benchmark LOC Machine Message Type of bug
types types

BoundedAsync 288 2 7 safety

ChainReplication 1,562 5 46 safety

Raft 1,302 5 29 safety

Chord 917 3 22 liveness

ReplicatingStorage 978 7 37 liveness

FailureDetector 674 4 19 both

TwoPhaseCommit 725 5 29 -

MultiPaxos 1,095 5 26 -

CacheCoherence 420 3 17 -

next one to schedule. The choice is determined by the scheduling strategy; among others,

the implemented strategies include the “random walk,” which selects the next machine

uniformly at random, and “prioritized strategy,” which randomly selects d scheduling

points during execution order and prioritizes them to make sure they are ordered in a

particular way. The latter strategy is similar to PCT, and it is called PCT in the P# source

code, but without the notion of chains it does not provide the same probabilistic guarantee.

Therefore we call it “prioritized strategy” to avoid confusion.

In order to keep track of causal dependencies, we implemented our own version of

the P# runtime called “PCTCP runtime”. Additionally, we simpli�ed the scheduler to

only schedule the receive events. In fact, the underlying concurrency model of PCTCP

runtime is coarser as it introduces fewer synchronization points. Therefore, it may miss

behaviors arising from interleavings of di�erent message handlers. However, it considers

all possible reorderings between concurrent events which may lead to a concurrency bug.

On top of this simpli�ed concurrency model, we implemented the PCTCP and the random

walk scheduling strategies. The random walk strategy selects the next event uniformly at

random among the enabled chains.

We evaluate our method on 9 sample implementations of distributed algorithms in the

P# framework, which were also used in previous work (Mudduluru et al. 2017; Deligiannis,

Donaldson, et al. 2015). Table 6.1 shows the characteristics of the P# benchmarks including

lines of code (LOC), number of machines and message types, and the type (safety or

liveness) of the underlying (known) bug(s).

Table 6.2 shows the result of applying PCTCP on P# benchmarks. For each bench-

88 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

Table 6.2: Results of applying PCTCP to P# benchmarks including number of buggy

schedules, average number of computed chains, maximum number of produced messages

and the running time.

Benchmark
Event
labels
(d)

Runs Buggy (%) Avg
chains

Max
msgs
(n)

Time (s)

BoundedAsync 1 10,000 98.97 12 128 71.48

ChainReplication 5 1,000 12.60 18 362 635.18

Raft 1 1,000 0.20 37 590 210.53

Chord 1 1,000 6.10 5 62 6.62

ReplicatingStorage 1 100 11.00 24 899 504.73

FailureDetector 1 5,000 0.36 27 172 360.87

TwoPhaseCommit 1 10,000 0.00 9 42 50.63

MultiPaxos 1 10,000 0.00 32 754 552.82

CacheCoherence 1 10,000 0.00 6 465 988.96

mark we ran PCTCP for a number of times (Runs) with a given value of parameter d
(Event labels), and measured the average number of computed chains (Avg chains), the

maximum number of messages in the partial order (Max msgs), the percentage of buggy

schedules (Buggy (%)), and the execution time in seconds (Time (s)).
To choose the value of parameter d , we start with the minimum value of 1 and

increment it only if it is not su�cient to catch at least one bug in 10,000 runs. As we can

see in Table 6.2, for ChainReplication we increased the value of d up to 5 to catch the two

underlying safety bugs. For the last three benchmarks in this table, we only experimented

with d = 1. These examples do not have bugs discoverable by our reference methods from

the P# framework as we will see in the following. Note that the bugs found with some

speci�c value of d do not necessarily have the bug depth of d .

From Table 6.2, it can be inferred that the measured probability of catching a bug of

depth d is higher than the guaranteed probability of PCTCP. This is mainly due to the

fact that some benchmarks had more than one bug (assertion violation). For example,

we observed two di�erent assertion violations in ChainReplication and FailureDetector.
Moreover, due to symmetry in these protocols various d-tuples can result in the same

assertion violation.

Table 6.3 reports the result of comparing the e�ectiveness of PCTCP in detecting bugs

(column 2) with other three reference methods: the random walk strategy in the PCTCP

runtime (column 3), the prioritized strategy (column 4) and the random walk (column 5) in

6.3. EXPERIMENTAL EVALUATION 89

Table 6.3: Comparison of e�ectiveness of PCTCP in bug detection with three other

methods.

Benchmark PCTCP runtime Original P# runtime
PCTCP Random walk Prioritized strategy Random walk

Buggy (%) Time (s) Buggy (%) Time (s) Buggy (%) Time (s) Buggy (%) Time(s)

BoundedAsync 98.97 71.48 99.04 71.35 0.00 88.60 0.00 76.98

ChainReplication 12.60 635.18 17.50 325.09 0.00 34.98 0.00 25.42

Raft 0.20 210.53 1.10 124.17 0.00 29.11 1.30 27.82

Chord 6.10 6.62 5.90 4.35 5.50 8.09 4.80 7.03

ReplicatingStorage 11.00 504.73 23.00 112.47 0.00 9.28 24.00 24.21

FailureDetector 0.36 360.87 0.08 146.32 0.00 2,267.71 0.00 3,012.57

TwoPhaseCommit 0.00 50.63 0.00 35.97 0.00 27.21 0.00 26.57

MultiPaxos 0.00 552.82 0.00 398.86 0.00 129.59 0.00 106.19

CacheCoherence 0.00 988.96 0.00 758.06 0.00 197.52 0.00 197.34

the original P# runtime. Recall that the two runtimes di�er in the underlying concurrency

model—the PCTCP runtime only schedules message receive events. The number of runs

and the parameter d for each benchmark are the same as in Table 6.2.

Table 6.3 shows that both PCTCP and its random walk version are more e�ective

in detecting bugs than the original random walk and prioritized strategies of P#. The

assertion violation in the Process machine of BoundedAsync was caught by the PCTCP

runtime in nearly all runs (using either strategy). However, both the prioritized and the

random walk strategies under the original P# runtime failed to reveal this bug by exploring

up to 10,000 schedules. PCTCP found two assertion violations in ChainReplication. The

one in ChainReplicationMaster machine was detected with d = 1; however for detecting

the violation in InvariantMonitor we had to increase the value of d to 5 (Table 6.2). Both

the prioritized (with d ≤ 5) and the random walk strategies of the P# framework did not

�nd these assertion violations by exploring up to 10,000 schedules (the running times

given in Table 6.3 for this benchmark are for 1,000 runs for the sake of comparison). Only

for some speci�c random seed values, the prioritized scheduler of P# runtime could �nd

the assertion violation in InvariantMonitor in 1 out of 10,000 runs (0.01% buggy schedules).

PCTCP also performed more e�ectively than any strategy under the original P# runtime

by detecting one liveness and one safety bug in FailureDetector. Both strategies of the P#

runtime failed to detect these bugs in 5,000 runs. The prioritized strategy could �nd this

bug in 70 out of 5,000 when applying d = 2 and the speci�c random seed value given in

the test suite of P# for this benchmark.

Note that, for ReplicatingStorage, we also compared the P# prioritized scheduler and

the PCTCP scheduler based on similar time budgets. However, no bug was caught by the

P# prioritized scheduler after exploring 100,000 schedules in 698.65 sec. We did the same

90 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

comparison for Raft.
As Table 6.3 shows, PCTCP is e�ective in detecting bugs in practice. It may not neces-

sarily always outperform random walk, but in contrast it provides theoretical guarantees

on �nding bugs.

Livelocks

Because the PCTCP scheduler always schedules events from the chain with highest priority,

it lacks fairness. This can result in livelocks in message-passing systems. For example, the

Raft benchmark may livelock under the PCTCP scheduler due to new messages always

being placed in the chain with the highest priority.

To avoid livelocks while searching for safety bugs, PCTCP identi�es the chain which

causes a livelock by detecting a cycle and using heuristics such as comparing the number

of times a chain is consecutively scheduled with a given threshold. It then temporarily

disables the identi�ed chain and enables it again as soon as a new message is added to it.

The livelock problem also a�ects the original PCT algorithm and is discussed in

Burckhardt et al. (2010). A more formal treatment of the issue is left for future work.

6.3.2 Case Study: Cassandra

In this and the next subsection we evaluate the e�ectiveness of PCTCP algorithm on two

complex real-world systems. The bugs in real-world distributed systems are known to be

hard to detect since in addition to message reorderings they often involve other kinds of

faults, like node crashes and reboots (Leesatapornwongsa et al. 2016b). We demonstrate

that PCTCP can e�ectively �nd bugs even in such realistic scenarios.

We start with Cassandra (Lakshman and Malik 2010)—a distributed NoSQL database

management system, which provides lightweight transactions based on the Paxos consen-

sus protocol.
5

Cassandra’s Paxos protocol implementation in version 2.0.0 (Apache 2012)

has a bug CASSANDRA-6023
6

which exposes in some subtle reorderings on the synchro-

nization messages exchanged between the nodes. The bug is detected in a scenario where

the nodes process di�erent client transactions concurrently. In an execution where some

commit messages of some transactions arrive at some nodes after the synchronization

messages of other transactions, it is possible to commit a transaction more than once. This

results in corrupting data and propagating it to the other nodes. The bug is deep and hard

to detect as it requires several message reorderings in several transactions and nodes.

5http://cassandra.apache.org
6https://issues.apache.org/jira/browse/CASSANDRA-6023

http://cassandra.apache.org
https://issues.apache.org/jira/browse/CASSANDRA-6023

6.3. EXPERIMENTAL EVALUATION 91

Table 6.4: Test parameters and results for the Cassandra system.

Max
events

Event
labels

Avg
max chains Runs Buggy Total time

(min)

Random walk 54 - 6.97 1,000 0 481.95

PCTCP 54 4 5.65 1,000 0 505.73

PCTCP 54 5 5.73 1,000 1 503.81

PCTCP 54 6 5.80 1,000 1 512.00

We tested Cassandra on our PCTCP implementation
7

which we build on top of the

SAMC/DMCK (Leesatapornwongsa et al. 2014a) model checker. Our PCTCP scheduler

collects the distributed system events intercepted by SAMC and partitions them into

chains. It selects the next event to be scheduled based on the chain priorities and sends

this selected event to SAMC to enforce its execution in the distributed system.

We tested di�erent schedules of a use case scenario with three concurrent client

transactions using both PCTCP and a naive random scheduler which randomly selects one

of the enabled events in the system. Table 6.4 shows the parameters and the results of our

tests. The �rst row shows the results for the random walk and each of the next rows shows

the PCTCP results for di�erent values of d , the number of event labels. The columns list

the maximum number of events produced by the benchmark (Max events), the size of

the tuple of event labels (Event labels), the number of runs (Runs), the number of buggy

schedules (Buggy) and the total running time of the tests in minutes (Time (min)). The

column Avg max chains shows the average of the maximum number of concurrently

enabled chains for PCTCP and the average of the maximum number of concurrently

enabled events in the naive random tests.

The PCTCP algorithm hits the bug in one of the schedules determined by 5 and 6-

tuples of events over 54 events. PCTCP detects the bug with a higher probability (0.1%

in this evaluation) than its theoretical guarantee (1/(w2nd−1)). This can be explained by

several facts: (i) Considering the poset width parameter w , we can say that the number

of concurrently enabled events (around 7 on average in our benchmark) is lower than

the width of the poset (around 10 in our benchmark) in general. During the execution of

PCTCP, it is typical to have several chains in which all the events are already executed

and the algorithm selects from a smaller number of chains than the poset width. As an

example consider a distributed system execution where the highest priority chain has

some events pertaining to some protocol communication between a sender and receiver.

The PCTCP scheduler moves to another chain (without a reduction in priorities) when all

7
The source code is available at https://gitlab.mpi-sws.org/burcu/pctcp-cass/tree/PCTCP.

https://gitlab.mpi-sws.org/burcu/pctcp-cass/tree/PCTCP

92 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

the events of this chain are executed. The �rst chain gets enabled only after some events

in the other chains, e.g., when processing other receivers’ responses in other chains cause

the sender to send an event that is inserted into the �rst chain. (ii) Now let us consider

the generation of a d − 1 tuple of events from n events to characterize a bug. In practice,

a bug is not only hit by a speci�c tuple of events but several tuples lead to the buggy

schedule. First, more than one ordering of events in the tuple can expose the same bug,

since some events in the tuple might be commutative. For example, a bug hit by a tuple of

three events (a,b, c) might require only the relative ordering of a − b and a − c , hence hit

also by the tuple (a, c,b). In our experiment, the detected 4-tuple of events which leads to

a buggy execution of Cassandra has two commutative events. Second, the problematic

relative ordering of the events can be generated by tuples of di�erent events. A distributed

system bug which is exposed by scheduling an event at a later point of execution can be

exposed by reducing the priority of a chain at this event as well as at an earlier event that

creates that event. As an example, reducing the priority of a chain at an event pertaining

to a certain part of the protocol communication between two nodes delays the execution

of the next events of the communication protocol as well.

The naive random approach cannot detect the bug in a total of 1000 schedules which

takes around eight hours to run. As shown in Table 6.4, the maximum number of con-

currently enabled events to select from randomly in random testing is higher than the

maximum number of concurrently enabled chains in PCTCP on average. Therefore, ran-

dom testing has a lower probability of hitting the bug by naively selecting the next event

among the enabled events.

6.3.3 Case Study: Zookeeper
Our next case study involves a system called Zookeeper

8
. Zookeeper is a distributed key-

value store used by large distributed systems for maintaining con�guration and naming

information, providing distributed synchronization, and for other purposes that arise

while coordinating nodes in a distributed setting. Its intended usage requires Zookeeper to

provide strong consistency guarantees, which it does by running a distributed consensus

algorithm called ZAB—Zookeeper Atomic Broadcast (Junqueira, Reed, and Sera�ni 2011).

In our case study we only focus on the �rst phase of the algorithm—the leader election—

and show that in the presence of node crashes and reboots, PCTCP can e�ectively �nd

executions resulting in multiple node leaders.

In the experiments we are using Zookeeper v3.4.3, even though the most recent stable

version was 3.4.11 at the time of writing this text. The reason is that the older version has

some known bugs which can be detected by tools like SAMC. In fact, the authors of SAMC

8https://zookeeper.apache.org/

https://zookeeper.apache.org/

6.3. EXPERIMENTAL EVALUATION 93

were kind enough to provide us with a version of their tool speci�cally tailored to catching

bug ZK-1419
9

in Zookeeper v3.4.3. The bug in question is a liveness bug—the nodes fail to

ever elect a leader. In a typical leader election involving 3 nodes, the nodes elect a leader by

exchanging 15 to 18 messages. Based on this observation, the authors of SAMC set a bound

of 50 events (including messages, but also node crashes and reboots)—any execution that

goes beyond this bound is marked as faulty. Following the instructions for reproducing

the bug, we ran SAMC in its semantic-aware exploration mode on 3 nodes, allowing 1

node crash and 1 reboot. Out of 174 executions explored in 2,798 seconds, 7 of them were

marked as faulty: 4 of them because they reached the bound, but interestingly, 3 of them

failed because they resulted in multiple leaders. Note that by itself the situation when

multiple nodes believe they are leaders does not constitute a bug in the leader election

protocol: the true leader has to be supported by a quorum of followers (cf. bug report

ZK-1912
10

). However, such situations may still indicate underlying issues, e.g. the bug

ZK-975
11

involves a node that unnecessarily goes into the leading state only to restart the

leader election after a delay, thus a�ecting availability of the system. We set to reproduce

the executions leading to multiple leaders, as well as followers following nodes that are

not leaders, using PCTCP. We refer to such situations as inconsistencies.
We built our own scheduler called HitMC12

. Like SAMC, HitMC can orchestrate

Zookeeper nodes by imposing the order of messages during leader election, and it can

crash and reboot nodes. Additionally, HitMC tracks causal dependencies among messages,

allowing us to form more general chain decompositions than simple per-node chaining

of messages. Unlike SAMC, which knows about commutativity among messages and

can thus employ partial-order reduction techniques, HitMC does not have any semantic

awareness—it treats messages opaquely and schedules them according to PCTCP.

We model the execution of the system with three kinds of events: node start, node

crash, and message. Fig. 6.2 shows an example of a scheduling poset for Zookeeper with

3 nodes. In the �gure, Start(n), Crash(n), and Msg(n, n′) designate the start event for node

n, the crash event for node n, and an event for a message from n to n′, respectively. For

each run of the system we specify a crash budget and a reboot budget. Each node’s initial

start event gets a corresponding crash event as a successor. We only e�ectively allow the

execution of these events if they are within the crash budget. Later, each executed crash

event gets a node start event as a successor and vice versa, as long as the corresponding

budget is still positive. Nodes send messages either automatically after they are started,

or in response to received messages. In the �rst case, a message is ordered after the last

9https://issues.apache.org/jira/browse/ZOOKEEPER-1419
10https://issues.apache.org/jira/browse/ZOOKEEPER-1912
11https://issues.apache.org/jira/browse/ZOOKEEPER-975
12

The source code is available at https://gitlab.mpi-sws.org/rupak/hitmc.

https://issues.apache.org/jira/browse/ZOOKEEPER-1419
https://issues.apache.org/jira/browse/ZOOKEEPER-1912
https://issues.apache.org/jira/browse/ZOOKEEPER-975
https://issues.apache.org/jira/browse/ZOOKEEPER-1419
https://issues.apache.org/jira/browse/ZOOKEEPER-1912
https://issues.apache.org/jira/browse/ZOOKEEPER-975
https://gitlab.mpi-sws.org/rupak/hitmc

94 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

Start(1) Start(2) Start(3)

Msg(1,1) Crash(1) Msg(2,1) Crash(2) Msg(3,1) Crash(3)

Msg(1,2) Start(2)

Msg(1,3) Msg(2,1) Crash(2)

Msg(1,1) Msg(2,2)

Figure 6.2: Scheduling poset for Zookeeper with 3 nodes. Gray events are executed and

black events are enabled.

node start event or the last message sent from the same node, and in the second case a

message is additionally ordered after the message it is responding to.

By default, HitMC schedules events according to PCTCP. The user speci�es parameters

d , the number of event labels, and n, the total number of events. If the number of events

in an actual run exceeds n, HitMC makes sure to �rst schedule the n events that were

added to the scheduling poset �rst. It then continues executing in the order speci�ed by

the chain priorities. No priority changes happen after the n-th event, and the probabilistic

guarantee of PCTCP only applies to the �rst n events. In addition to PCTCP, HitMC

provides the “random walk” scheduling strategy, which selects the next event in each step

uniformly at random among the enabled events.

Like with SAMC, our experiments consist of executing Zookeeper’s leader election on

3 nodes, with the crash and reboot budget of 1 each. We experiment with the random

walk strategy, as well as PCTCP with the parameter d ranging from 1 to 5. In each case,

we execute a total of 1,000 random runs. In addition, we execute 1,000 runs of PCTCP with

d = 2 and no crashes and reboots, in order to see whether we can �nd inconsistent election

results even without node crashes. Following the SAMC’s bound for the number of events

within which the leader should be elected, we set the parameter n for the maximal number

of events to 50. Unlike SAMC, we do not stop the execution when the maximal number of

events is reached. Instead, we let the system run for up to 1,000 events.

The results of the experiments are summarized in Table 6.5. With the random walk

strategy we observe inconsistent election results in 12 out of 1,000 runs. With PCTCP we

observe inconsistencies in at least 26 runs for d = 4, and up to 42 runs for d = 5. Note

that the number of inconsistent runs for d = 5 amounts to 4.2% of all the runs. Even in

6.3. EXPERIMENTAL EVALUATION 95

Table 6.5: Zookeeper results for 1,000 executions of each strategy. The columns are:

average max enabled events (AMEE), max enabled events (MEE), average events (AE), max

events (ME), average max chains (AMC), max chains (MC), number of faulty executions

(F), and total time in seconds (T). The experiment marked by ? had no crashes or reboots;

in all other cases there was 1 node crash and 1 reboot per run. In the case of PCTCP with

d = 4, we observed a non-terminating run, most likely exhibiting bug ZK-1419. The run

was terminated after reaching 1,000 events. Numbers marked by † are given with the

non-terminating run excluded.

Strategy AMEE MEE AE ME AMC MC F T

Random walk 6 6 20.9 36 - - 12 7,040

PCTCP (d = 1, n = 50) 6 6 20.6 31 6.4 10 39 2,059

PCTCP (d = 2, n = 50)
?

3 5 18.2 52 4.5 11 34 5,107

PCTCP (d = 2, n = 50) 6 6 20.7 34 7.5 11 32 2,060

PCTCP (d = 3, n = 50) 6 6 21.0 34 8.6 12 26 2,103

PCTCP (d = 4, n = 50) 6 7
†
23.4

†
63 10.1 18

†
40+1 6,835

PCTCP (d = 5, n = 50) 6 6 23.7 70 11.2 19 42 7,111

the experiment without crashes and reboots, we detect inconsistencies in 34 runs. Except

for d ≥ 4, almost all runs �nish within the predicted limit of 50 events. For d ≥ 4, there

are 10 runs that exceed this limit and go up to 63 and 70 events. Additionally, for d = 4

we observe a run that failed to terminate even after 1,000 events, possibly exhibiting the

non-termination issue ZK-1419. However, it is also possible that the non-termination

occurs due to the non-fair nature of our scheduler. Finally, we note that a run takes

between 2 and 7 seconds on average, which allows us to execute a set of 1,000 runs in 30

to 120 minutes.

https://issues.apache.org/jira/browse/ZOOKEEPER-1419
https://issues.apache.org/jira/browse/ZOOKEEPER-1419

96 CHAPTER 6. ONLINE CONSTRUCTION OF HITTING FAMILIES

Chapter 7

Related Work

7.1 Combinatorial Testing

Our results can broadly be seen as an instance of combinatorial testing (Kuhn, Kacker,

and Lei 2010; Colbourn 2004), the sub-�eld of testing that designs near-optimal test suites

to cover all k-wise interactions among a large number of features. Like in our case, the

key insight in combinatorial testing is that many bugs depend only on the interaction of

a small number of features: in many cases, combinations of up to 6 features su�ce for

detecting most bugs in industrial applications (Kuhn, Kacker, and Lei 2010).

The main objects studied in combinatorial testing are covering arrays. An N × n
array over values from the set {0, . . . ,v − 1} is said to be k-covering if every N × k
sub-array contains all vk possible rows (with multiple occurrences allowed). For given

parameters n, k , and v , the goal is to �nd the smallest number of rows N (n,k,v) such

that there exists a k-covering array of size N (n,k,v) × n. Many practical approaches for

constructing covering arrays of small size have been studied, including greedy algorithms,

hill-climbing algorithms, simulated annealing, and genetic algorithms (Colbourn 2004).

Non-constructive bounds on N (n,k,v) are usually shown using the probabilistic method.

For example, Godbole, Skipper, and Sunley (1996) show the following bound using the

Lovász local lemma (Alon and Spencer 2004):

N (n,k,v) ≤
(k − 1) logn

log

(
vk/(vk − 1)

) (1 + o(1)) .
For concrete values of k and v , more precise bounds are known. For example, N (n, 3, 2) ≤
7.56444 logn(1 + o(1)). This bound, attributed to Roux (Godbole, Skipper, and Sunley

1996), is proved by switching from arbitrary binary arrays to arrays with equal number

97

98 CHAPTER 7. RELATED WORK

of zeros and ones in each column—a technique similar to our switching from arbitrary

partitions to balanced and semibalanced partitions in Sections 4.2 and 4.4.

Note that covering arrays are an instance of our covering families. A test is a row of

an array—a vector of size n with components taking values in the set {0, . . . ,v − 1}—and a

testing goal is a set ofk positions 1 ≤ i1 < i2 < . . . < ik ≤ n and a vectorv ∈ {0, . . . ,v−1}k .

A test t ∈ {0, . . . ,v−1}n covers this goal if the k components at positions (i1, i2, . . . , ik) of t
make up the vectorv . A family F of vectors of size n is a covering family if it covers every

testing goal, thus it is nothing but a covering array. The probability that a random vector

t ∈ {0, . . . ,v − 1}n covers a testing goal is v−k . There are

(
n
k

)
vk testing goals in all. Using

Theorem 3.1, we obtain that there is a covering family of size O (kvk logn). By taking into

account the independence of two testing goals with non-overlapping positions and using

the Lovász local lemma, we can obtain a slightly better bound ofO ((k − 1)vk logn), which

is asymptotically the same as the bound obtained by Godbole, Skipper, and Sunley (1996).

As a concrete example of combinatorial testing using covering arrays, consider the

testing of combinational VLSI circuits (Seroussi and Bshouty 1988). We are given a

circuit with n inputs, which consists of a large number of smaller components, and each

component depends on at most k of the n inputs. In VLSI testing applications, n may

be much larger than k . A test consists of a Boolean vector of n bits. Informally, our

testing goal is to test every component with every possible input of k bits. Thus, our

testing task precisely corresponds to �nding small k-covering arrays for v = 2. From the

discussion above, we obtain that there is a covering array of size O (k2
k

logn). Moreover,

by Theorem 3.1, every array of 2
k (k logn+ log ϵ−1) randomly generated rows is a covering

array with probability at least 1 − ϵ . This was in fact the main result of Seroussi and

Bshouty (1988). Note that the naive bound isO (nk2
k). In fact, Seroussi and Bshouty (1988)

show a lower bound of Ω(2k logn), so the probabilistic method is almost optimal in this

case.

7.2 Randomized Approaches

Random simulation is the primary mode of testing systems with large and complex

state spaces across many di�erent domains: from sequential circuits to network protocol

implementations and to large-scale distributed systems. Practitioners tend to use random

schedulers and random fault-injection (Apache Hadoop 2016; Kingsbury 2013–2018;

Izrailevsky and Tseitlin 2011; Claessen et al. 2009) to test their systems, sometimes even

advocating doing this in production. The latter approach, dubbed Chaos Engineering and

codi�ed in the Principles of Chaos Engineering (2018), is the underlying philosophy of

Net�ix Simian Army (Izrailevsky and Tseitlin 2011), a collection of tools called monkeys

7.2. RANDOMIZED APPROACHES 99

that randomly tamper with the system in production, with engineers monitoring the

e�ects and addressing problems as they arise.

Our results from Chapters 3 and 4 are a step towards a theoretical understanding of

random testing: we show that the e�ectiveness of testing can be explained in certain

scenarios by providing lower bounds on the probability that a single random test covers

a �xed coverage goal. For network partition tests, we introduce a set of coverage goals

inspired by actual bugs in distributed systems and show lower bounds on the probability

of a random test covering a goal.

7.2.1 Deterministic Families of Tests

Probabilistic constructions demonstrate existence of covering families, and we can amplify

the probability of �nding a test suite. However, the soundness guarantee is “with high

probability.” Unfortunately, even when a small covering family can be shown to exist,

an explicit, deterministic construction of a covering family can be a signi�cantly harder

problem. This is a recurring theme in combinatorics (Alon 2010): for many problems,

explicit deterministic constructions come much later than an existence argument using the

probabilistic method. In fact, there are many combinatorial objects proved to exist using

the probabilistic method for which we do not know optimal deterministic constructions

(Alon and Spencer 2004)! For example, our notion of splitting families is related to

perfect hash functions (Yao 1981; Fredman, Komlós, and Szemerédi 1984; Czech, Havas,

and Majewski 1997). In this context, Yao (1981) gives a highly non-trivial deterministic

construction of k-splitting families of size 4
k2

(log
2
n)k−1

, which is worse than the bound

kk+1(k!)−1
logn obtained through Corollary 4.3. Furthermore, decision problems related

to minimal constructions or enumerations are usually computationally intractable (NP-

hard (Seroussi and Bshouty 1988; Yannakakis 1982)); thus, it is unlikely that a simple

deterministic approach can supplant the simplicity of random testing.

Even when deterministic construction of a covering family is known, it may be

infeasible to execute all tests from the family. Consider Yao’s construction of k-splitting

families. Already for n = 5 and k = 2—the values used in Jepsen tests—the size of the

family is approximately 595. Increase n to 10 and k to 3, and the size grows to 9,609,717.

Compared to this, randomly constructed families have two additional bene�ts: they

do not require a sophisticated test generation algorithm and we can always stop the

construction and apply Theorem 3.1 or its instances in reverse to obtain the probability

that the constructed family is covering. The probability can serve as a qualitative measure

of coverage.

100 CHAPTER 7. RELATED WORK

7.2.2 RandomWalks over Graphs

We focus on “static” notions of coverage, where showing lower bounds on probabilities are

relatively easier. In random simulation of reactive systems, such as network protocols, the

testing process de�nes a random walk over the state space of the system. If the random

walk rapidly mixes, that is, converges to a stationary distribution in a small number

of steps, random simulation fairly simulates the reachable state space in a stationary

distribution. Rigorous analysis of random walks using Markov chain mixing techniques

was pioneered by C. H. West (1989) for a simple class of decoupled network protocols

(technically, the state space was a hypercube). Mihail and Papadimitriou (1994) used

coupling techniques to prove rapid mixing for the class of symmetric dyadic �ip-�ops

(SDFF): a concurrent system of automata, each with two states, communicating pairwise

by rendezvous and where each action has a reverse action. Unfortunately, it is very hard

to prove rapid mixing for most Markov chains, indeed, there are counterexamples to rapid

mixing when the rather severe restrictions of SSDF are relaxed; for example, reversibility

is a strong requirement (Levin, Peres, and Wilmer 2009).

It is tempting to provide a random testing version of systematic testing procedures

such as context-bounded reachability. For example, could one show that a random walk on

the state space de�ned by a multithreaded program quickly visits any k-context-bounded

reachable state? Unfortunately, this involves bounding the hitting time for a random walk

on a directed graph, i.e., the expected time for a random walk to visit a node, and we

do not have a su�ciently strong lower bound on the hitting time that gives better than

exponential bounds.

Thus, we believe extensions of our techniques to “dynamic” coverage may require

sophisticated methods.

7.3 Systematic Approaches

As we have already noted in the introduction, one direction of research in assuring correct

behavior of distributed systems is to build fully veri�ed systems “from scratch.” Despite

heroic e�orts in this direction (Lamport 1994; Wilcox et al. 2015; Hawblitzel et al. 2015),

we are quite far from replacing existing infrastructure with fully veri�ed deployments of

comparable functionality and performance.

The other direction of research are systematic approaches like model checking (Baier

and Katoen 2008; Yang et al. 2009; Leesatapornwongsa et al. 2014b; Fisman, Kupferman,

and Lustig 2008; Konnov, Veith, and Widder 2017) and systematic fault-injection (Alvaro,

Rosen, and Hellerstein 2015; Gunawi et al. 2011), which design algorithms and heuristics

that perform systematic search over behaviors which are su�cient to �nd all bugs. A

7.4. THEORY OF PARTIAL ORDERS 101

technique that is commonly employed by the model checking approaches is partial order

reduction (Godefroid 1996; Flanagan and Godefroid 2005; Abdulla et al. 2014): instead of

exploring all behaviors of the system, if su�ces to only one representative behavior among

equivalent behaviors, i.e., those di�ering only in the ordering of independent events. In

their recent work, Yuan, Yang, and Gu (2018) introduce a randomized scheduling algorithm

that takes partial order reduction into account. These techniques do not restrict the search

space to depth-d bugs, as we do. We do not know how partial order reduction can be

modi�ed to e�ciently explore depth-d bugs.

Di�erent notions of bug depth are de�ned in the literature. These notions aim to

parametrize the search space by a depth d , so that a d-bounded exploration provides a

high coverage of the executions that are likely to be buggy. Context bounding (Qadeer and

Rehof 2005) characterizes the depth as the number of context switches between threads

required to hit a bug. Preemption bounding (Musuvathi and Qadeer 2007) bounds only

the preemptive switches between the tasks. Although this notion yields a smaller depth

for the cases where tasks run to completion, it is still not e�cient for exploring schedules

where many tasks need to be preempted to hit a schedule. Delay bounding (Emmi, Qadeer,

and Rakamaric 2011b), which de�nes the depth as the number of deviations from a

given deterministic scheduler, and phase bounding (Bouajjani and Emmi 2012), which

bounds the number of process communication cycles, are applicable to distributed system

setting, since the bug depth parameter does not limit the number of tasks/nodes involved

in the execution. The work by Desai, Qadeer, and Seshia (2015) presents a randomized

algorithm for asynchronous systems based on delay-bounded exploration. Their algorithm

is parametrized by a delaying scheduler where the depth parameter does not characterize

the bug but the search space. The bug depth we use in our work (which is also used in

Burckhardt et al. (2010)) is de�ned only by the ordering constraints between the events in

the execution, and it is independent of the exploration strategy.

7.4 Theory of Partial Orders
As we have already noted in Chapter 5, our notion of d-hitting families is closely related

to the notion of order dimension for a partial order (Dushnik and Miller 1941; Trotter 2001).

Speci�cally, the size of an optimal 2-hitting family is the order dimension of a partial

order, and the size of an optimal d-hitting family is a natural generalization. To the best of

our knowledge, general d-hitting families have not been studied before for general partial

orders. A version of the dimension (d = 2) called fractional dimension is known to be of

use for approximation of some problems in scheduling theory (Ambühl et al. 2008). Other

generalizations of the dimension are also known (see, e.g., Trotter (1976)), but, to the best

of our knowledge, none of them is equivalent to ours.

102 CHAPTER 7. RELATED WORK

Online chain partitioning and its connection to online dimension for upgrowing posets

was studied by Felsner (1997) and Kloch (2007). Their work is part of a larger context of

studying unrestricted posets. In the unrestricted setting, bounds on the optimal number

of chains are much worse than for upgrowing posets. While an upgrowing poset can be

partitioned online into at most

(
w+1

2

)
chains, for a long time the best known upper bound

for an unrestricted poset was (5w − 1)/4 (Henry A. Kierstead 1981). Bosek and Krawczyk

(2010) found a subexponential upper bound of w16 log
2
w

, which was recently improved to

w6.5 log
2
w+7

(Bosek, Hal A. Kierstead, et al. 2018), and even more recently to wO (log logw)

(Bosek and Krawczyk 2018). A nice, albeit outdated survey of the results in this setting

was done by Bosek, Felsner, et al. (2012).

The online chain partitioning algorithm we use in Chapter 6 is by Agarwal and Garg,

and it appears in their work on chain clocks (Agarwal and Garg 2007): they compare

vector clocks, where each component in the clock corresponds to a thread in the program,

and chain clocks, where each component in the clock corresponds to a chain in a chain

partition obtained by online chain partitioning. They show that in many cases chain

clocks are considerably more e�cient than vector clocks. Similarly to this, it would make

sense to try running PCTCP side-by-side with PCT on multithreaded programs, and see

whether there are scenarios in which PCTCP would �nd a better chain partition than the

one induced by threads. An experiment along these lines is left for future work.

7.5 Practical Tools

On the application side, our work is related to a number of tools for �nding bugs in

concurrent and distributed systems. We start by mentioning Bita, a testing tool for actor

programs implemented within Akka framework in Scala (Tasharo� et al. 2013). By using

an arbitrary execution of the program as the initial schedule, Bita systematically reverses

the order of pairs of concurrent messages in a given schedule to produce new schedules,

and then executes these schedules. The exploration is guided by coverage goals similar to

our 2-hitting goal. Unlike Bita, our algorithm PCTCP randomly samples schedules from a

strong d-hitting family for arbitrary d , and does not rely on any initial execution of the

program.

Another related tool is EventRacer, a race detector for client-side web applications

(Raychev, M. Vechev, and Sridharan 2013). Similarly to Bita, EventRacer explores schedules

by pairwise reversal of concurrent events, but with the goal of detecting races—concurrent

con�icting accesses to the same memory location. One of the key contributors to Even-

tRacer’s e�ciency is the use of chain clocks instead of vector clocks. EventRacer’s chain

clocks are based on a greedy chain decomposition. The authors report a 33-fold reduction

7.5. PRACTICAL TOOLS 103

in the average length of chain clocks compared to standard vector clocks. Even with a

highly optimized bit-vector representation of vector clocks, chain clocks are reported to

consume on average 6.6 times less memory, which signi�cantly improves overall perfor-

mance. In a di�erent paper on race detection, Dimitrov, M. T. Vechev, and Sarkar (2015)

also use insights from theoretical work on partial orders to show that lattices of dimension

two admit e�cient race detection.

104 CHAPTER 7. RELATED WORK

Bibliography

Abdulla, Parosh et al. (2014). “Optimal Dynamic Partial Order Reduction”. In: Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’14. San Diego, California, USA: ACM, pp. 373–384. doi: 10.1145/2535838.
2535845.

Agarwal, Anurag and Vijay K. Garg (2007). “E�cient dependency tracking for relevant

events in concurrent systems”. In: Distributed Computing 19.3, pp. 163–183. doi: 10.
1007/s00446-006-0004-y.

Alon, Noga (2010). “Algebraic and Probabilistic Methods in Discrete Mathematics”. In:

Visions in Mathematics: GAFA 2000 Special volume, Part II. Basel: Birkhäuser Basel,

pp. 455–470. doi: 10.1007/978-3-0346-0425-3_1.

Alon, Noga and Joel H. Spencer (2004). The Probabilistic Method. Wiley-Interscience series

in discrete mathematics and optimization. Wiley.

Alvaro, Peter, Joshua Rosen, and Joseph M. Hellerstein (2015). “Lineage-driven Fault Injec-

tion”. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM, pp. 331–346. doi:

10.1145/2723372.2723711.

Ambühl, Christoph et al. (2008). “Precedence Constraint Scheduling and Connections to

Dimension Theory of Partial Orders”. In: Bulletin of the EATCS 95, pp. 37–58.

Apache (2012). Cassandra-2.0.0. url: http://archive.apache.org/dist/cassandra/2.
0.0/ (visited on 04/13/2018).

Apache Hadoop (2016). Fault Injection Framework and Development Guide. url: http:
//hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-hdfs/
FaultInjectFramework.html (visited on 07/07/2017).

Baier, Christel and Joost-Pieter Katoen (2008). Principles of Model Checking. MIT Press.

Bosek, Bartłomiej, Stefan Felsner, et al. (2012). “On-Line Chain Partitions of Orders: A

Survey”. In: Order 29.1, pp. 49–73. doi: 10.1007/s11083-011-9197-1.

Bosek, Bartłomiej, Hal A. Kierstead, et al. (2018). “An Easy Subexponential Bound for

Online Chain Partitioning”. In: Electr. J. Comb. 25.2, P2.28.

105

http://dx.doi.org/10.1145/2535838.2535845
http://dx.doi.org/10.1145/2535838.2535845
http://dx.doi.org/10.1007/s00446-006-0004-y
http://dx.doi.org/10.1007/s00446-006-0004-y
http://dx.doi.org/10.1007/978-3-0346-0425-3_1
http://dx.doi.org/10.1145/2723372.2723711
http://archive.apache.org/dist/cassandra/2.0.0/
http://archive.apache.org/dist/cassandra/2.0.0/
http://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html
http://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html
http://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html
http://dx.doi.org/10.1007/s11083-011-9197-1

106 BIBLIOGRAPHY

Bosek, Bartłomiej and Tomasz Krawczyk (2010). “The Sub-exponential Upper Bound

for On-Line Chain Partitioning”. In: 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. IEEE

Computer Society, pp. 347–354. doi: 10.1109/FOCS.2010.40.

— (2018). “On-line Partitioning of Width w Posets into wO (log logw) Chains”. In: CoRR
abs/1810.00270. arXiv: 1810.00270.

Bouajjani, Ahmed and Michael Emmi (2012). “Bounded Phase Analysis of Message-Passing

Programs”. In: TACAS ’12: Proc. 18th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. LNCS. Springer.

Brewer, Eric A. (2000). “Towards robust distributed systems (abstract)”. In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, July
16-19, 2000, Portland, Oregon, USA. ACM, p. 7. doi: 10.1145/343477.343502.

— (2012). CAP Twelve Years Later: How the “Rules” Have Changed. url: https://www.
infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
(visited on 07/07/2017).

Burckhardt, Sebastian et al. (2010). “A randomized scheduler with probabilistic guarantees

of �nding bugs”. In: Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2010, Pittsburgh,
Pennsylvania, USA, March 13-17, 2010. ACM, pp. 167–178. doi: 10.1145/1736020.
1736040.

Chalermsook, Parinya, Bundit Laekhanukit, and Danupon Nanongkai (2013). “Graph Prod-

ucts Revisited: Tight Approximation Hardness of Induced Matching, Poset Dimension

and More”. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013. SIAM,

pp. 1557–1576. doi: 10.1137/1.9781611973105.112.

Chaos Engineering (2018). Principles of Chaos Engineering. url: http://principlesofchaos.
org/ (visited on 09/18/2018).

Chistikov, Dmitry, Rupak Majumdar, and Filip Niksic (2016). “Hitting Families of Schedules

for Asynchronous Programs”. In: Computer Aided Veri�cation - 28th International Con-
ference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. Vol. 9780.

Lecture Notes in Computer Science. Springer, pp. 157–176. doi: 10.1007/978-3-319-
41540-6_9.

Claessen, Koen et al. (2009). “Finding race conditions in Erlang with QuickCheck and

PULSE”. In: Proceeding of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP 2009. ACM, pp. 149–160.

Colbourn, Charles J. (2004). “Combinatorial aspects of covering arrays”. In: Le Matematiche
59.1,2, pp. 125–172.

http://dx.doi.org/10.1109/FOCS.2010.40
http://arxiv.org/abs/1810.00270
http://dx.doi.org/10.1145/343477.343502
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://dx.doi.org/10.1145/1736020.1736040
http://dx.doi.org/10.1145/1736020.1736040
http://dx.doi.org/10.1137/1.9781611973105.112
http://principlesofchaos.org/
http://principlesofchaos.org/
http://dx.doi.org/10.1007/978-3-319-41540-6_9
http://dx.doi.org/10.1007/978-3-319-41540-6_9

BIBLIOGRAPHY 107

Czech, Zbigniew J., George Havas, and Bohdan S. Majewski (1997). “Perfect Hashing”. In:

Theor. Comput. Sci. 182.1-2, pp. 1–143. doi: 10.1016/S0304-3975(96)00146-6.

Deligiannis, Pantazis, Alastair F. Donaldson, et al. (2015). “Asynchronous Programming,

Analysis and Testing with State Machines”. In: SIGPLAN Not. 50.6, pp. 154–164. doi:

10.1145/2813885.2737996.

Deligiannis, Pantazis, Matt McCutchen, et al. (2016). “Uncovering Bugs in Distributed

Storage Systems during Testing (Not in Production!)” In: 14th USENIX Conference
on File and Storage Technologies (FAST 16). Santa Clara, CA: USENIX Association,

pp. 249–262.

Desai, Ankush, Shaz Qadeer, and Sanjit A. Seshia (2015). “Systematic Testing of Asyn-

chronous Reactive Systems”. In: Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering. ESEC/FSE 2015. Bergamo, Italy: ACM, pp. 73–83. doi:

10.1145/2786805.2786861.

Dilworth, Robert P. (1950). “A Decomposition Theorem for Partially Ordered Sets”. In:

Annals of Mathematics 51.1, pp. 161–166.

Dimitrov, Dimitar, Martin T. Vechev, and Vivek Sarkar (2015). “Race Detection in Two Di-

mensions”. In: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015. ACM, pp. 101–110.

doi: 10.1145/2755573.2755601.

Dushnik, Ben and E. W. Miller (1941). “Partially Ordered Sets”. In: American Journal of
Mathematics 63.3, pp. 600–610.

Edgar, Gerald A., Daniel H. Ullman, and Douglas B. West (2017). “Problems and Solutions”.

In: The American Mathematical Monthly 124.2, pp. 179–187.

Emmi, Michael, Shaz Qadeer, and Zvonimir Rakamaric (2011a). “Delay-bounded schedul-

ing”. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. ACM,

pp. 411–422. doi: 10.1145/1926385.1926432.

— (2011b). “Delay-bounded scheduling”. In: POPL ’11: Proc. 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, pp. 411–422.

Erdős, Paul and László Lovász (1975). “Problems and Results on 3-Chromatic Hypergraphs

and Some Related Questions”. In: In�nite and Finite Sets (to Paul Erdős on his 60th
birthday). Ed. by A. Hajnal, R. Rado, and V. T. Sós. Vol. 2. North-Holland, pp. 609–627.

Felsner, Stefan (1997). “On-Line Chain Partitions of Orders”. In: Theor. Comput. Sci. 175.2,

pp. 283–292. doi: 10.1016/S0304-3975(96)00204-6.

Fisman, Dana, Orna Kupferman, and Yoad Lustig (2008). “On Verifying Fault Tolerance of

Distributed Protocols”. In: Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March

http://dx.doi.org/10.1016/S0304-3975(96)00146-6
http://dx.doi.org/10.1145/2813885.2737996
http://dx.doi.org/10.1145/2786805.2786861
http://dx.doi.org/10.1145/2755573.2755601
http://dx.doi.org/10.1145/1926385.1926432
http://dx.doi.org/10.1016/S0304-3975(96)00204-6

108 BIBLIOGRAPHY

29-April 6, 2008. Proceedings. Vol. 4963. Lecture Notes in Computer Science. Springer,

pp. 315–331. doi: 10.1007/978-3-540-78800-3_22.

Flanagan, Cormac and Patrice Godefroid (2005). “Dynamic Partial-order Reduction for

Model Checking Software”. In: Proceedings of the 32Nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL ’05. Long Beach, California, USA:

ACM, pp. 110–121. doi: 10.1145/1040305.1040315.

Fomin, Fedor V. et al. (2012). “Planar F -Deletion: Approximation, Kernelization and

Optimal FPT Algorithms”. In: 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pp. 470–479. doi:

10.1109/FOCS.2012.62.

Fredman, Michael L., János Komlós, and Endre Szemerédi (1984). “Storing a Sparse Table

with O (1) Worst Case Access Time”. In: J. ACM 31.3, pp. 538–544. doi: 10.1145/828.
1884.

Ganty, Pierre and Rupak Majumdar (2012). “Algorithmic veri�cation of asynchronous

programs”. In: ACM Trans. Program. Lang. Syst. 34.1, 6:1–6:48. doi: 10.1145/2160910.
2160915.

Gatling Corp (2011–2018). Gatling. url: https://gatling.io/ (visited on 09/07/2018).

Gilbert, Seth and Nancy Lynch (2002). “Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services”. In: SIGACT News 33.2, pp. 51–59. doi:

10.1145/564585.564601.

Godbole, Anant P., Daphne E. Skipper, and Rachel A. Sunley (1996). “t-Covering arrays: Up-

per bounds and poisson approximations”. In: Combinatorics Probability and Computing
5.2, pp. 105–117.

Godefroid, Patrice (1996). Partial-Order Methods for the Veri�cation of Concurrent Systems:
An Approach to the State-Explosion Problem. Ed. by J. van Leeuwen, J. Hartmanis, and

G. Goos. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Graham, Ronald L., Donald Ervin Knuth, and Oren Patashnik (1994). Concrete Mathematics:
A Foundation for Computer Science. A foundation for computer science. Addison-

Wesley.

Gunawi, Haryadi S. et al. (2011). “FATE and DESTINI: A Framework for Cloud Recovery

Testing”. In: Proceedings of the 8th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011. USENIX

Association.

Hawblitzel, Chris et al. (2015). “IronFleet: proving practical distributed systems correct”. In:

Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015, Monterey,
CA, USA, October 4-7, 2015. ACM, pp. 1–17. doi: 10.1145/2815400.2815428.

http://dx.doi.org/10.1007/978-3-540-78800-3_22
http://dx.doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1109/FOCS.2012.62
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1145/2160910.2160915
http://dx.doi.org/10.1145/2160910.2160915
https://gatling.io/
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/2815400.2815428

BIBLIOGRAPHY 109

Hegde, Rajneesh and Kamal Jain (2007). “The Hardness of Approximating Poset Dimen-

sion”. In: Electronic Notes in Discrete Mathematics 29, pp. 435–443. doi: 10.1016/j.
endm.2007.07.084.

Izrailevsky, Yury and Ariel Tseitlin (2011). The Net�ix Simian Army. url: https://medium.
com/netflix-techblog/the-netflix-simian-army-16e57fbab116 (visited on

07/07/2017).

Jensen, Casper Svenning et al. (2015). “Stateless model checking of event-driven ap-

plications”. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pp. 57–73. doi: 10.1145/
2814270.2814282.

Jhala, Ranjit and Rupak Majumdar (2007). “Interprocedural analysis of asynchronous

programs”. In: Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2007, Nice, France, January 17-19, 2007. ACM, pp. 339–

350. doi: 10.1145/1190216.1190266.

Junqueira, F.P., B.C. Reed, and M. Sera�ni (2011). “Zab: High-performance Broadcast for

Primary-backup Systems”. In: Proceedings of the 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems&Networks. DSN ’11. IEEE Computer Society, pp. 245–

256.

Kierstead, Henry A. (1981). “An E�ective Version of Dilworth’s Theorem”. In: Transactions
of the American Mathematical Society 268.1, pp. 63–77.

Kingsbury, Kyle (2013–2018). Jepsen. url: http://jepsen.io/ (visited on 09/18/2018).

— (2013). Partitions for Everyone! url: https://www.infoq.com/presentations/
partitioning-comparison (visited on 07/07/2017).

Kloch, Kamil (2007). “Online dimension of partially ordered sets”. In: Reports on Mathe-
matical Logic 42, pp. 101–116.

Konnov, Igor, Helmut Veith, and Josef Widder (2017). “On the completeness of bounded

model checking for threshold-based distributed algorithms: Reachability”. In: Inf.
Comput. 252, pp. 95–109. doi: 10.1016/j.ic.2016.03.006.

Kuhn, D. Richard, Raghu N. Kacker, and Yu Lei (2010). “Combinatorial Testing”. In: Ency-
clopedia of Software Engineering. Ed. by Phillip A. Laplante. CRC Press, pp. 1–12.

Lakshman, Avinash and Prashant Malik (2010). “Cassandra: a decentralized structured

storage system”. In: ACM SIGOPS Operating Systems Review 44.2, pp. 35–40.

Lamport, Leslie (1994). “The Temporal Logic of Actions”. In: ACM Trans. Program. Lang.
Syst. 16.3, pp. 872–923. doi: 10.1145/177492.177726.

Leesatapornwongsa, Tanakorn et al. (2014a). “SAMC: Semantic-Aware Model Checking

for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th USENIX Symposium on

http://dx.doi.org/10.1016/j.endm.2007.07.084
http://dx.doi.org/10.1016/j.endm.2007.07.084
https://medium.com/netflix-techblog/the-netflix-simian-army-16e57fbab116
https://medium.com/netflix-techblog/the-netflix-simian-army-16e57fbab116
http://dx.doi.org/10.1145/2814270.2814282
http://dx.doi.org/10.1145/2814270.2814282
http://dx.doi.org/10.1145/1190216.1190266
http://jepsen.io/
https://www.infoq.com/presentations/partitioning-comparison
https://www.infoq.com/presentations/partitioning-comparison
http://dx.doi.org/10.1016/j.ic.2016.03.006
http://dx.doi.org/10.1145/177492.177726

110 BIBLIOGRAPHY

Operating Systems Design and Implementation (OSDI 14). Broom�eld, CO: USENIX

Association, pp. 399–414.

Leesatapornwongsa, Tanakorn et al. (2014b). “SAMC: Semantic-Aware Model Checking

for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broom�eld, CO, USA, October
6-8, 2014. USENIX Association, pp. 399–414.

Leesatapornwongsa, Tanakorn et al. (2016a). “TaxDC: A Taxonomy of Non-Deterministic

Concurrency Bugs in Datacenter Distributed Systems”. In: Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016. ACM, pp. 517–530.

doi: 10.1145/2872362.2872374.

— (2016b). “TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter

Distributed Systems”. In: Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS ’16.

Atlanta, Georgia, USA: ACM, pp. 517–530. doi: 10.1145/2872362.2872374.

Levin, David Asher, Yuval Peres, and Elizabeth Lee Wilmer (2009). Markov Chains and
Mixing Times. American Mathematical Society.

Lopes, Cristina Videira (2016). Distributed Systems Testing: The Lost World. url: http:
//tagide.com/blog/research/distributed- systems- testing- the- lost-
world/ (visited on 07/07/2017).

Lu, Shan et al. (2008). “Learning from mistakes: a comprehensive study on real world

concurrency bug characteristics”. In: Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS 2008,
Seattle, WA, USA, March 1-5, 2008. ACM, pp. 329–339. doi: 10.1145/1346281.1346323.

Majumdar, Rupak and Filip Niksic (2018). “Why is random testing e�ective for partition

tolerance bugs?” In: PACMPL 2.POPL, 46:1–46:24. doi: 10.1145/3158134.

McCa�rey, Caitie (2015). “The Veri�cation of a Distributed System”. In: ACM Queue 13.9,

p. 60. doi: 10.1145/2857274.2889274.

Mihail, Milena and Christos H. Papadimitriou (1994). “On the Random Walk Method for

Protocol Testing”. In: Computer Aided Veri�cation, 6th International Conference, CAV
’94, Stanford, California, USA, June 21-23, 1994, Proceedings. Vol. 818. Lecture Notes in

Computer Science. Springer, pp. 132–141. doi: 10.1007/3-540-58179-0_49.

Milgram, Stanley (1967). “The Small World Problem”. In: Psychology Today.

Mudduluru, Rashmi et al. (2017). “Lasso detection using partial-state caching”. In: 2017
Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6,
2017. IEEE, pp. 84–91. doi: 10.23919/FMCAD.2017.8102245.

Musuvathi, Madanlal and Shaz Qadeer (2007). “Iterative Context Bounding for Systematic

Testing of Multithreaded Programs”. In: Proceedings of the 2007 ACM SIGPLAN Con-

http://dx.doi.org/10.1145/2872362.2872374
http://dx.doi.org/10.1145/2872362.2872374
http://tagide.com/blog/research/distributed-systems-testing-the-lost-world/
http://tagide.com/blog/research/distributed-systems-testing-the-lost-world/
http://tagide.com/blog/research/distributed-systems-testing-the-lost-world/
http://dx.doi.org/10.1145/1346281.1346323
http://dx.doi.org/10.1145/3158134
http://dx.doi.org/10.1145/2857274.2889274
http://dx.doi.org/10.1007/3-540-58179-0_49
http://dx.doi.org/10.23919/FMCAD.2017.8102245

BIBLIOGRAPHY 111

ference on Programming Language Design and Implementation. PLDI ’07. San Diego,

California, USA: ACM, pp. 446–455. doi: 10.1145/1250734.1250785.

Ongaro, Diego and John Ousterhout (2014). “In Search of an Understandable Consensus Al-

gorithm”. In: 2014 USENIX Annual Technical Conference, USENIX ATC ’14, Philadelphia,
PA, USA, June 19-20, 2014. USENIX Association, pp. 305–319.

Ozkan, Burcu Kulahcioglu et al. (2018). “Randomized Testing of Distributed Systems

with Probabilistic Guarantees”. In: PACMPL 2.OOPSLA, 160:1–160:28. doi: 10.1145/
3276530.

Petrov, Boris et al. (2012). “Race detection for web applications”. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, Beijing,
China - June 11 - 16, 2012, pp. 251–262. doi: 10.1145/2254064.2254095.

Qadeer, Shaz and Jakob Rehof (2005). “Context-Bounded Model Checking of Concurrent

Software”. In: TACAS ’05: Proc. 11th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Vol. 3440. LNCS. Springer, pp. 93–107.

Raychev, Veselin, Martin T. Vechev, and Manu Sridharan (2013). “E�ective race detection

for event-driven programs”. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA
2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. ACM, pp. 151–166.

doi: 10.1145/2509136.2509538.

Raychev, Veselin, Martin Vechev, and Manu Sridharan (2013). “E�ective Race Detection

for Event-driven Programs”. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications.
OOPSLA ’13. Indianapolis, Indiana, USA: ACM, pp. 151–166. doi: 10.1145/2509136.
2509538.

Seroussi, Gadiel and Nader H. Bshouty (1988). “Vector sets for exhaustive testing of logic

circuits”. In: IEEE Trans. Information Theory 34.3, pp. 513–522. doi: 10.1109/18.6031.

Tasharo�, Samira et al. (2013). “Bita: Coverage-guided, automatic testing of actor pro-

grams”. In: 2013 28th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013. IEEE, pp. 114–124.

doi: 10.1109/ASE.2013.6693072.

Trotter, William T. (1976). “A Generalization of Hiraguchi’s: Inequality for Posets”. In: J.
Comb. Theory, Ser. A 20.1, pp. 114–123. doi: 10.1016/0097-3165(76)90081-9.

— (2001). Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins

Studies in the Mathematical Sciences. Johns Hopkins University Press.

Valdes, Jacobo, Robert Endre Tarjan, and Eugene L. Lawler (1982). “The Recognition

of Series Parallel Digraphs”. In: SIAM J. Comput. 11.2, pp. 298–313. doi: 10.1137/
0211023.

http://dx.doi.org/10.1145/1250734.1250785
http://dx.doi.org/10.1145/3276530
http://dx.doi.org/10.1145/3276530
http://dx.doi.org/10.1145/2254064.2254095
http://dx.doi.org/10.1145/2509136.2509538
http://dx.doi.org/10.1145/2509136.2509538
http://dx.doi.org/10.1145/2509136.2509538
http://dx.doi.org/10.1109/18.6031
http://dx.doi.org/10.1109/ASE.2013.6693072
http://dx.doi.org/10.1016/0097-3165(76)90081-9
http://dx.doi.org/10.1137/0211023
http://dx.doi.org/10.1137/0211023

112 BIBLIOGRAPHY

West, Colin H. (1989). “Protocol Validation in Complex Systems”. In: SIGCOMM ’89,
Proceedings of the ACM Symposium on Communications Architectures & Protocols, Austin,
TX, USA, September 19-22, 1989. ACM, pp. 303–312. doi: 10.1145/75246.75276.

Wilcox, James R. et al. (2015). “Verdi: a framework for implementing and formally veri-

fying distributed systems”. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June 15-17,
2015. ACM, pp. 357–368. doi: 10.1145/2737924.2737958.

Yang, Junfeng et al. (2009). “MODIST: Transparent Model Checking of Unmodi�ed Dis-

tributed Systems”. In: Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2009, April 22-24, 2009, Boston, MA, USA. USENIX

Association, pp. 213–228.

Yannakakis, Mihalis (1982). “The Complexity of the Partial Order Dimension Problem”. In:

SIAM Journal on Algebraic Discrete Methods 3.3, pp. 351–358. doi: 10.1137/0603036.

eprint: https://doi.org/10.1137/0603036.

Yao, Andrew Chi-Chih (1981). “Should Tables Be Sorted?” In: J. ACM 28.3, pp. 615–628.

doi: 10.1145/322261.322274.

Yuan, Xinhao, Junfeng Yang, and Ronghui Gu (2018). “Partial Order Aware Concurrency

Sampling”. In: Computer Aided Veri�cation - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part II. Vol. 10982. Lecture Notes in Computer Science. Springer, pp. 317–

335. doi: 10.1007/978-3-319-96142-2_20.

http://dx.doi.org/10.1145/75246.75276
http://dx.doi.org/10.1145/2737924.2737958
http://dx.doi.org/10.1137/0603036
https://doi.org/10.1137/0603036
http://dx.doi.org/10.1145/322261.322274
http://dx.doi.org/10.1007/978-3-319-96142-2_20

Appendix A

Curriculum Vitae

Research Interests
Analysis, veri�cation, and testing of concurrent and distributed systems. In particular, I

am interested in applying combinatorial techniques to systematic and random testing.

Education
09/2012—10/2018 Max Planck Institute for Software Systems, Kaiserslautern

Doctoral researcher in computer science, advised by Rupak Majumdar

09/2009—10/2011 Department of Mathematics, University of Zagreb

Enrolled in a doctoral program in mathematics

07/2004—10/2009 Department of Mathematics, University of Zagreb

Dipl. Ing. (4-year degree) in Mathematics (pro�le: Computer Science)

GPA: 4.7 / 5.0

Employment
10/2018— University of Pennsylvania, Philadelphia

Postdoctoral researcher in computer science

09/2012—10/2018 Max Planck Institute for Software Systems, Kaiserslautern

Doctoral researcher in computer science

113

114 APPENDIX A. CURRICULUM VITAE

05/2016—08/2016 Microsoft Corp., Redmond

Research intern working on a testing and fault-injection framework for concurrent

software. Technologies: C#, .NET Compiler Platform (“Roslyn”)

04/2010—09/2012 IN2 d.o.o., Zagreb

Software engineer developing �nancial software. Technologies: Oracle DB (SQL,

PL/SQL), Java (Spring Framework), and Adobe Flex

Teaching Experience

10/2016—02/2017 Technische Universität Kaiserslautern

Teaching assistant: Program Analysis (Winter 2016/2017)

04/2014—07/2014 Technische Universität Kaiserslautern

Teaching assistant: Veri�cation of Reactive Systems (Summer 2014)

03/2008—09/2009 Department of Mathematics, University of Zagreb

Student assistant: Set theory (Summer 2008), Introduction to parallel computing

(Winter 2008), Application of parallel computers (Summer 2009).

09/2002—06/2005 Informatics Club NET, Ivanić-Grad

Tutoring high school students for programming competitions

Professional Service

• Artifact evaluation committee: ISSTA 2015, ECOOP 2018, CAV 2019

• Conference reviews: CAV 2013, CSL 2013, FMCAD 2013, EMSOFT 2014, FMCAD

2014, LICS 2014, CADE 2015, VMCAI 2015, POPL 2016, TACAS 2016, VMCAI 2017,

ICALP 2018

• Journal reviews: ACM Transactions on Computational Logic, Acta Informatica

115

Technical Skills
Operating systems: GNU/Linux, Mac OS X, Windows

Programming languages: C/C++, C#, Java, Python, PL/SQL, ActionScript (Flex)

Databases: Oracle DB

Language Skills
Croatian (native), English (�uent), German (basic)

Publications
1. Burcu Kulahcioglu Ozkan, Rupak Majumdar, F. N. Checking Linearizability Using

Hitting Families. PPoPP 2019

2. Burcu Kulahcioglu Ozkan, Rupak Majumdar, F. N., Mitra Tabaei Befrouei, Georg

Weissenbacher. Randomized Testing of Distributed Systems with Probabilistic Guar-
antees. PACMPL 2 (OOPSLA) 2018

3. Rupak Majumdar, F. N. Why is Random Testing E�ective for Partition Tolerance Bugs?
PACMPL 2 (POPL) 2018

4. Dmitry Chistikov, Rupak Majumdar, F. N. Hitting Families of Schedules for Asyn-
chronous Programs. CAV 2016

5. Ivan Gavran, F. N., Aditya Kanade, Rupak Majumdar, Viktor Vafeiadis. Rely/Guaran-
tee Reasoning for Asynchronous Programs. CONCUR 2015

6. Sumit Gulwani, Mikaël Mayer, F. N., Ruzica Piskac. StriSynth: Synthesis for Live
Programming. ICSE 2015

7. Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp Meyer, F. N. An
SMT-Based Approach to Coverability Analysis. CAV 2014

8. Johannes Kloos, Rupak Majumdar, F. N., Ruzica Piskac. Incremental, Inductive Cover-
ability. CAV 2013

	Introduction
	Abstract Testing
	Testing with Random Partitions
	Testing with Hitting Families
	Contributions

	Motivating Examples
	Etcd
	Kafka
	Chronos
	CTStore
	Summary and Coverage Notions

	Abstract Testing
	Covering Families
	Independent Goals

	Testing with Random Partitions
	Combinatorial Preliminaries
	Splitting Families
	Separating Families
	Minority Isolating Families

	Testing with Hitting Families
	Hitting Families of Schedules
	Preliminaries: Partial Orders
	Schedules and Their Families
	Admissible Tuples and Hitting Families

	Specific Partial Orders
	Chains and Antichains
	Series-Parallel Orders
	Binary Semilattices
	Trees

	3-Hitting Families for Series-Parallel Orders
	d-Hitting Families for Trees for d3
	From Hitting Families to Systematic Testing

	Online Construction of Hitting Families
	Overview of the Approach
	Online Strong Hitting Schedulers
	Scheduling Games
	Online Hitting for Upgrowing Posets
	Online Hitting for Scheduling Posets
	Online Chain Partitioning
	PCTCP—PCT with Chain Partitioning

	Experimental Evaluation
	P# Benchmarks
	Case Study: Cassandra
	Case Study: Zookeeper

	Related Work
	Combinatorial Testing
	Randomized Approaches
	Deterministic Families of Tests
	Random Walks over Graphs

	Systematic Approaches
	Theory of Partial Orders
	Practical Tools

	Curriculum Vitae

