Rely/Guarantee Reasoning
for Asynchronous Programs

lvan Gavran’, Filip Niksic', Aditya Kanadez,
Rupak Majumdar?, Viktor Vafeiadis’

1 Max Planck Institute for Software Systems (MPI-SWS), Germany
2 Indian Institute of Science, Bangalore, India

Asynchronous programming
'S widespread

 Web apps: AJAX, |Query, XMLHttpRequest
 Smartphone apps: AsyncTask, dispatch_async
* Server-side: node.js, java.nio

* Systems: kqueue, epoll, Libevent

e Other: async/await in Scala

Common feature:
Posting tasks for later execution

pending tasks

|

Common feature:
Posting tasks for later execution

pending tasks

B C
@ @

Common feature:
Posting tasks for later execution

pending tasks

|

Common feature:
Posting tasks for later execution

Tasks may be executed when

* triggered by external events
(mouse click, response ready, socket ready, ...)

e dispatched by a scheduler

Drawback:
Obscured control-tlow

Drawback:
Obscured control-tlow

Multiple pending tasks may be executed In
any order.

Drawback:
Obscured control-tlow

orecondition Ps

Drawback:
Obscured control-tlow

A C B
.......)’|).T.
postcondition Qa precondition Pg

Q. = Ps

Drawback:
Obscured control-tlow

A C B
.......)’|)‘T‘
postcondition Qa precondition Pg
Qar = Ps

C might invalidate Ps

Adapting rely/guarantee
reasoning

A C B
.......)’|)‘T‘
postcondition Qa precondition Pg

Q. = Ps

Adapting rely/guarantee
reasoning

A C B
.......)‘|)‘T‘
postcondition Qa precondition Pg
Qar = Ps rely Rs:

‘preserve Py’

Adapting rely/guarantee
reasoning

A C B
.......)‘|)‘T’
postcondition Qa precondition Pg
Qar = Ps rely Rs:
guarantee Ge “oreserve Pg”

Ge =2 Rs

Soundness of
rely/guarantee reasoning

Given a program with specification in terms of
oredicates P, Q, R, G, if

* the predicates satisty “natural rely/guarantee
conditions”

* each task meets its rely/guarantee specification

then the program is correct.

Rely/guarantee reasoning is
modular

Sufficient to verify each task in isolation,

using a veritier for sequential software.

Contributions

We have:
* |dentified the “natural rely/guarantee conditions”
* Proved soundness of rely/guarantee reasoning

 Demonstrated the approach on two C programs
that use Libevent (done using Frama-C)

The rest of the talk:
Rely/guarantee. ..

... by example
... In theory

... In practice

The rest of the talk:
Rely/guarantee. ..

... by example
... In theory

... In practice

Modeling asynchronous tasks

Extend an imperative language with asynchronous
procedures, together with constructs:

post f(vi, .., Vi)
delete f(vi, .., Vk)
Maintain a set of pending procedure instances.

Execute instances atomically in a non-deterministic
order.

Example: ROT13 server

async main() {
int socket = prepare socket();
post accept(socket);

}

async accept(int socket) {
struct client *c = malloc(..);
client setup(c);
c->fd = accept connection(socket);
post read(c);
post accept(socket);

}

async read(struct client *c) { .. }

async write(struct client *c) { .. }

Example: ROT13 server

async read(struct client *c) {

if (..) { // c->fd is ready
receive chunk(c);
post write(c);
post read(c);

}

else { // connection is closed
delete write(c);
free(c);

async write(struct client *c) {

if (..) { // c->fd is ready
send chunk(c);
if (more to send(c))

post write(c);

}

else { // connection is closed
delete read(c);
free(c);

Example: ROT13 server

//@ requires valid(c);

async read(struct client *c) {

if (..) { // c->fd is ready
receive chunk(c);
post write(c);
post read(c);

}

else { // connection is closed
delete write(c);
free(c);

//@ requires valid(c);

async write(struct client *c) {

if (..) { // c->fd is ready
send chunk(c);
if (more to send(c))

post write(c);

}

else { // connection is closed
delete read(c);
free(c);

Introducing predicate
posteds

For each asynchronous procedure £ (x1,..,Xx), W€
iIntroduce a predicate

posted:(X1, ..., Xk)

True Iff £ has been posted with arguments Xi, ..., Xk
during the execution of the current asynchronous
procedure.

Example: ROT13 server

/*@ requires valid(c); /*@ requires valid(c);
@ ensures Vci; @ ensures Vci;
@ posted read(ci) = valid(ci); @ posted write(c:i) = wvalid(ci);
@ ensures Vci; Q*/
@ posted write(c:) = valid(ci); async write(struct client *c) {
@x/ if (..) { // c->fd is ready

send chunk(c);
if (more to send(c))
post write(c);

async read(struct client *c) {
if (..) { // c->fd is ready
receive chunk(c);
post write(c);
post read(c);

}

else { // connection is closed
delete read(c);
free(c);

}

else { // connection is closed
delete write(c);
free(c);

Preserving the precondition

read(c) write(c)
.......)“r.)
P.rite(c) = valid(c) Purite(c) = valid(c)

parent child

Preserving the preconaition

read(ci)
write(ci)
read(c) accept (socket) write(c)
.......)“)‘r‘)
Pwrite(C) = Valid(C) Pwrite(c) = valid(c)

parent concurrent siblings child

Preserving the preconaition

read(ci)
write(ci)
read(c) accept(socket) write(c)
.......)‘.................)‘.................)‘......)

Gread = Rwrite
guarantee Purite G .. = R... rely on Purite
s preserved write = TWrEIt® - heing preserved
Gaccept = Rwrite

parent concurrent siblings child

Introducing predicate
pendings

For each asynchronous procedure £ (x1,..,Xx), W€
iINntroduce a predicate

pendings(X1, ..., Xk)

True iff £ with arguments Xi, ..., Xk IS pending, i.€. IS
in the set of pending procedure instances.

write's rely predicate Ryrite

Rurite = VC. (pending’urite(C) A peNdingyrite(C)

A valid’(c)) = valid(c)

(prime means at the beginning of execution)

write's global invariant

With write's parents ensuring:

vC. postedyrite(C) = valid(c)

and write's concurrent siblings ensuring:

vC. (pending'vwrite(C) A PeNdiNQurite(C)
A valid’(c)) = valid(c)

rely/guarantee ensures a global invariant:

ve. pendingurite(C) = valid(c)

Final specitication of write

/*@ requires Precondition:
valid(c);
ensures Parent child condition:
Vci; posted write(ci) = valid(ci);

(Vci; (pending read’ (ci1) A pending read(ci)

@

@

@

@ ensures Guarantee:
@

@ A valid’ (c1)) = valid(ci))
@

A (Vci; (pending write’(ci1i) A pending write(c:)
@ A valid’ (c1)) = wvalid(ci));

@x/

async write(struct client *c) { .. }

Final specitication of write

/*@ requires Precondition:
valid(c);
ensures Parent child condition:
Vci; posted write(ci) = valid(ci);

@
@
@
@ ensures Guarantee:
@
@
@

(Vci; (pending read’ (ci1) A pending read(ci) } F%
A valid’ (ci1)) = valid(ci)) read
A (Vci; (pending write’(ci1i) A pending write(c:) } F% .
@ A valid’ (ci1)) = valid(ci)); write
@*/

async write(struct client *c) { .. }

Final specitication of write

/*@ requires Precondition:
@ valid(c);

@ ensures Parent child condition:
@ Vci; posted write(ci) = valid(ci);
@ ensures Guarantee:
@ (Vci; (pending read’ (ci1) A pending read(c:) } F%
T, . read
@ A valid’ (c1)) = valid(ci))
@ A (Vci; (pending write’(ci1i) A pending write(c:) } F% _
@ A valid’ (c1)) = valid(ci)); write
@*/
async write(struct client *c) { .. }

write can now be verified in isolation using a
standard verification tool (in our case Frama-C)

The rest of the talk:
Rely/guarantee. ..

... In theory

... In practice

Rely/guarantee decomposition

-0Or each asynchronous procedure £ we require:

P — precondition predicate
e R¢ —rely predicate
 (Gf — guarantee predicate

« Qs — postcondition predicate

First-order formulas; may include predicates
postedqy and pendingg (In negative positions)

Rely/guarantee conditions

Given a rely/guarantee decomposition, for
each asynchronous procedure f:

(1) Qs = Gs
(2) Qg = (posteds = P¢), for each g € parents(£)
(3) Re = ((pending’s A pendings A P's) = Pg)

(4) Gg = Rg, for each g e siblings(f)

Soundness of
rely/guarantee reasoning

Theorem. Given an asynchronous program
with a rely/guarantee decomposition, if

* the decomposition satisfies the rely/guarantee
conditions

* each procedure meets its specification (P and Q)

then the program is correct.

Key lemma

Lemma. For each asynchronous procedure £,
at every schedule point we have

pending: = Ps

The rest of the talk:
Rely/guarantee. ..

... In practice

Generic rely/guarantee
oredicates

Given preconditions P¢, the weakest predicates that
satisty the rely/guarantee conditions:

 Re = (pending’s A pendings A P's) = Ps

o (Gf = /\ Rg

g € siblings(£f)

* Qe=Gsa /\ postedq = Py

g € children(f)

Generic rely/guarantee

oredicates

Sufficient for the

RO

//@ requires valid(c);

async read(struct client *c) {

if (..) { // c->fd is ready
receive chunk(c);
post write(c);
post read(c);

}

else { // connection is closed
delete write(c);
free(c);

13 example;

//@ requires valid(c);

async write(struct client *c) {

if (..) { // c->fd is ready
send chunk(c);
if (more to send(c))

post write(c);

}

else { // connection is closed
delete read(c);
free(c);

Generic rely/guarantee

oredicates
Sufficient for the RO

//@ requires valid(c);

async read(struct client *c) {
if (..) { // c->fd is ready
receive chunk(c);
post write(c);
post read(c);

13 example;

//@ requires valid(c);

async write(struct client *c) {
if (..) { // c->fd is ready
send chunk(c);
if (more to send(c))
post write(c);

} }

else { // connection is closed else { // connection is closed
delete write(c); delete read(c);
free(c); free(c);

} }

}

Not sufficient in general.

Implementation for Libevent

* Focused on C programs that use Libevent

Low-level usage of Libevent replaced with calls to
pOSt_f (X1, .y Xk)

delete f(xXi, .., Xx)

Verification done using Frama-C (WP, Z3)
good: utilizing a mature and stable tool
bad: utilizing a mature and stable tool (!)

summary

We have:
* |dentified the “natural rely/guarantee conditions”
* Proved soundness of rely/guarantee reasoning

 Demonstrated the approach on two C programs
that use Libevent (done using Frama-C)

http:/www.mpi-sws.org/~fniksic/ fniksic@mpi-sws.org

http://www.mpi-sws.org/~fniksic/
mailto:fniksic@mpi-sws.org

Race example

struct device {
int owner;

} dev;

async main() {
dev.owner = 0;
int socket = prepare socket();
post accept(socket);

}

async accept(int socket) {
int id = new_client_id(); // positive, unique
int fd = accept connection(socket);
post new client(id, £d);
post accept(socket);

}
async new client(int id, int £fd) { .. }

async write(int id, int £fd) { .. }

Race example

async new client(int id, int £d) { async write(int id, int £d) {

if (dev.owner > 0) { if (transfer(fd, dev)) {
post new client(id, £d); post write(id, £d);

} }

else { else { // write complete
dev.owner = id; dev.owner = 0;
post write(id, £fd); }

} }

Race example

/*@ requires Precondition: /*@ requires Precondition:
@ id > 0; @ id > 0 A
Q% / @ dey.owner == jid A
1 . 4) £4 @ vV 1d:, £di;
asyn? new client(int 1d, int) { @ pending write(idi, £d:)
i1f (dev.owner > 0) { "o __
: : @ = 1id == idi A fd == fdi;
post new client(id, £fd);
} @*/
else { async write(int id, int £fd) {
dev.owner = id; if (transfer(fd, dev)) {
post write(id, £fd); post write(id, £d);
} }
} else { // write complete

dev.owner = 0;

}

Race example

/*@ requires Precondition: /*@ requires Precondition:
@ id > 0; @ id > 0 A
@ ensures Parent child write: @ dev.owner == id A
@ v idi, fdi; @ v idi, £fdi;
@ posted write(id:, £di) @ pending write(id:, £di)
@ = P write(id:, fdi); @ = 1d == idi; A fd == f£fdi;
@*/ @*/
async new client(int id, int £d) { async write(int id, int £d) {
if (dev.owner > 0) { if (transfer(fd, dev)) {
post new client(id, £d); post write(id, £d);
} }
else { else { // write complete
dev.owner = id; dev.owner = 0;
post write(id, £d); }
} }

Race example

/*@ requires Precondition: /*@ requires Precondition:
@ id > 0; @ id > 0 A
@ ensures Parent_child write: X @ dev.owner == id A
@ v idi, fdi; @ v idi, £fdi;
@ posted write(id:, £di) @ pending write(id:, £di)
@ = P write(id:, fdi); @ = 1d == idi; A fd == f£fdi;
@*/ @*/
async new client(int id, int £d) { async write(int id, int £d) {
if (dev.owner > 0) { if (transfer(fd, dev)) {
post new client(id, £d); post write(id, £d);
} }
else { else { // write complete
dev.owner = id; dev.owner = 0;
post write(id, £d); }
} }

Race example

/*@ requires Precondition: /*@ requires Precondition:
@ id > 0; @ id > 0 A
@ requires Global inv write: @ dev.owner == id A
@ v id:, fdi; @ v idi, £fdi;
@ pending write(id:, f£di) @ pending write(id:, £di)
@ = P write(id:, £fdi); @ = 1d == idi; A fd == f£fdi;
@ ensures Parent child write: @x/
@ v id:, fdi; async write(int id, int £d) {
@ posted_write(idi, fdi) if (transfer(fd, dev)) {
@ = P_write(id:, £fdi); post write(id, £d);
@/ }

else { // write complete

async new client(int id, int £d) { dev.owner = 0:

if (dev.owner > 0) {

post new client(id, £d); ;
) - }
else {

dev.owner = id;

post write(id, f£d);
}

Race example

/*@ requires Precondition: /*@ requires Precondition:
@ id > 0; @ id > 0 A
@ requires Global inv write: @ dev.owner == id A
@ v id:, fdi; @ v idi, £fdi;
@ pending write(id:, f£di) @ pending write(id:, £di)
@ = P write(id:, £fdi); @ = 1d == idi; A fd == f£fdi;
@ ensures Parent child write: V,' @x/
@ v id:, fdi; async write(int id, int £d) {
@ posted_write(idi, fdi) if (transfer(fd, dev)) {
@ = P_write(id:, £fdi); post write(id, £d);
@/ }

else { // write complete

async new client(int id, int £d) { dev.owner = 0:

if (dev.owner > 0) {

post new client(id, £d); ;
) - }
else {

dev.owner = id;

post write(id, f£d);
}

