
Hitting Families of Schedules
for Asynchronous Programs

Dmitry Chistikov1,2, Rupak Majumdar1, Filip Niksic1

1 Max Planck Institute for Software Systems (MPI-SWS), Germany
2 University of Oxford, UK

Ninjas at a conference banquet

Icons made by Freepik at www.flaticon.com

…

1 2 n

A banquet is complete if for every pair of ninjas (i, j),
there’s a course served to ninja i before ninja j.

How many courses make a banquet complete?

http://www.flaticon.com/authors/freepik
http://www.flaticon.com/

Ninjas at a conference banquet

Icons made by Freepik at www.flaticon.com

…

1 2 n

Two courses suffice:

…

n n-1 1

http://www.flaticon.com/authors/freepik
http://www.flaticon.com/

Ninjas at a conference banquet

Icons made by Freepik at www.flaticon.com

1

2 3

4 5 6 7

What if ninjas form a hierarchy?
A master is always served before their student.

http://www.flaticon.com/authors/freepik
http://www.flaticon.com/

Ninjas at a conference banquet

Icons made by Freepik at www.flaticon.com

Again, two courses suffice:

421 5 3 6 7

731 6 2 5 4

ldfs

rdfs

http://www.flaticon.com/authors/freepik
http://www.flaticon.com/

Ninjas at a conference banquet
What if instead of pairs we consider triplets of ninjas?

A banquet is 3-complete if for every triplet of ninjas (i, j, k),
there’s a course served to ninja i before j, and j before k.

Ninjas at a conference banquet
What if instead of pairs we consider triplets of ninjas?

A banquet is 3-complete if for every triplet of ninjas (i, j, k),
there’s a course served to ninja i before j, and j before k.

admissible

Ninjas at a conference banquet
What if instead of pairs we consider triplets of ninjas?

A banquet is 3-complete if for every triplet of ninjas (i, j, k),
there’s a course served to ninja i before j, and j before k.

Naive approach with 2n courses:
for each i@{1,…,n}:
serve ancestry line to i; ldfs the rest
serve ancestry line to i; rdfs the rest

admissible

Ninjas at a conference banquet
What if instead of pairs we consider triplets of ninjas?

A banquet is 3-complete if for every triplet of ninjas (i, j, k),
there’s a course served to ninja i before j, and j before k.

Can be done with O(log n) courses!

Naive approach with 2n courses:
for each i@{1,…,n}:
serve ancestry line to i; ldfs the rest
serve ancestry line to i; rdfs the rest

admissible

From ninjas to concurrent systems

ninjas
hierarchy
courses

d-complete banquet

events
partial order
schedules

d-hitting family of schedules

Icons made by Freepik at www.flaticon.com

http://www.flaticon.com/authors/freepik
http://www.flaticon.com/

d-hitting families of schedules

Given a poset of events, a family of schedules F is
d-hitting if for every admissible d-tuple of events there is
a schedule in F that hits it.

Given a poset of events, a schedule hits a d-tuple of
events (e1,…,ed) if it executes the events in the order
e1<…<ed.

Why d?
Empirically: Many bugs involve small number of events—bug depth d

[Lu et al. ASPLOS ’08] [Burckhardt et al. ASPLOS ’10] [Jensen et al. OOPSLA ’15] [Qadeer et al. TACAS ’05]

• d = 2: order violation
• d = 3: atomicity violation

A d-hitting family of schedules provides a notion of coverage:
it hits any bug of depth d.

Moreover, for certain kinds of partial orders we can explicitly
construct small d-hitting families.

Contributions
1. The notion of d-hitting families of schedules

2. For anti-chains with n elements, existence of hitting
families of size O(exp(d)·log n)

3. For trees of height h:
• d = 3: explicit construction of hitting families of size 4h (optimal)
• d > 3: explicit construction of hitting families of size O(exp(d)·hd-1)

Contributions
1. The notion of d-hitting families of schedules

2. For anti-chains with n elements, existence of hitting
families of size O(exp(d)·log n)

3. For trees of height h:
• d = 3: explicit construction of hitting families of size 4h (optimal)
• d > 3: explicit construction of hitting families of size O(exp(d)·hd-1)

Why trees?
AsyncTask1

AsyncTask2 AsyncTask3

• Trees arise from a simple fire-and-forget model of
asynchronous programs.

• Trees are a stepping stone to more complicated partial
orders.

3-hitting families for trees
admissible (a,b,c)

a
c

b

height h

3-hitting families for trees
admissible (a,b,c)

a
c

height h

3-hitting families for trees
admissible (a,b,c)

a
c

d

d = lca(a,c) (could be a itself)

height h

3-hitting families for trees
admissible (a,b,c)

a
c

d

d = lca(a,c) (could be a itself)

height h

level i

3-hitting families for trees
admissible (a,b,c)

a
c

d

d = lca(a,c) (could be a itself)

height h

level i

3-hitting families for trees
admissible (a,b,c)

a
c

d

d = lca(a,c) (could be a itself)

height h

level i dfs blocking right@i; dfs the rest

3-hitting families for trees
admissible (a,b,c)

a
c

d

d = lca(a,c) (could be a itself)

height h

level i dfs blocking right@i; dfs the rest
dfs blocking left@i; dfs the rest

3-hitting families for trees
admissible (a,b,c)

a
c

b

d

d = lca(a,c) (could be a itself)

height h

level i dfs blocking right@i; dfs the rest
dfs blocking left@i; dfs the rest

3-hitting families for trees
admissible (a,b,c)

a
c

b

d

d = lca(a,c) (could be a itself)

height h

level i ldfs blocking right@i; ldfs the rest
ldfs blocking left@i; ldfs the rest
rdfs blocking right@i; rdfs the rest
rdfs blocking left@i; rdfs the rest

3-hitting families for trees
admissible (a,b,c)

a
c

b

d

d = lca(a,c) (could be a itself)

height h

level i ldfs blocking right@i; ldfs the rest
ldfs blocking left@i; ldfs the rest
rdfs blocking right@i; rdfs the rest
rdfs blocking left@i; rdfs the rest

for each i@{0,…,h-1}:

3-hitting families for trees
admissible (a,b,c)

a
c

b

d

d = lca(a,c) (could be a itself)

height h

level i ldfs blocking right@i; ldfs the rest
ldfs blocking left@i; ldfs the rest
rdfs blocking right@i; rdfs the rest
rdfs blocking left@i; rdfs the rest

for each i@{0,…,h-1}:

Total: 4h schedules
(4·log n for a balanced tree)

d-hitting families for d≥ 4
admissible (x1,…,xd)

height h

d-hitting families for d≥ 4
admissible (x1,…,xd)
D = lca-closure(x1,…,xd) (an ordered tree)

height h

d-hitting families for d≥ 4
admissible (x1,…,xd)
D = lca-closure(x1,…,xd) (an ordered tree)

height h

i1,…,ik — levels of D’s internal nodes

d-hitting families for d≥ 4
admissible (x1,…,xd)
D = lca-closure(x1,…,xd) (an ordered tree)

height h

i1,…,ik — levels of D’s internal nodes

d-hitting families for d≥ 4
admissible (x1,…,xd)
D = lca-closure(x1,…,xd) (an ordered tree)

height h

i1,…,ik — levels of D’s internal nodes
π — schedule of D that hits (x1,…,xd)

(D, i1,…,ik, π) is a pattern:
• determines a partition of the tree
• by scheduling parts according to π,

determines a schedule that hits (x1,…,xd)

d-hitting families for d≥ 4
admissible (x1,…,xd)
D = lca-closure(x1,…,xd) (an ordered tree)

height h

i1,…,ik — levels of D’s internal nodes
π — schedule of D that hits (x1,…,xd)

(D, i1,…,ik, π) is a pattern:
• determines a partition of the tree
• by scheduling parts according to π,

determines a schedule that hits (x1,…,xd)

for each pattern:
schedule according to pattern

d-hitting families for d≥ 4
Claim. For any nodes x1,…,xd, |D| ≤ 2d-1. Moreover, D
has at most d-1 internal nodes.

Accounting:
• at most exp(d) ordered trees with 2d-1 nodes
• at most hd-1 choices for levels i1,…,id-1
• at most d! schedules π
Total: at most exp(d)·d!·hd-1 patterns

d-hitting families for d≥ 4
Claim. For any nodes x1,…,xd, |D| ≤ 2d-1. Moreover, D
has at most d-1 internal nodes.

Accounting:
• at most exp(d) ordered trees with 2d-1 nodes
• at most hd-1 choices for levels i1,…,id-1
• at most d! schedules π
Total: at most exp(d)·d!·hd-1 patterns

Note: For d=3, this is O(h2) instead of O(h) schedules

From hitting families
to systematic testing

Posets of event need not be static
• Use on-the-fly constructions as a heuristic

Beyond trees
• Our results extend to series-parallel graphs
• In general, even the case of d=2 is difficult

(order dimension [Dushnik & Miller, ’41])

Unbalanced trees
• Height h can be close to number of nodes n
• Use domain-specific properties to first reduce the poset

Summary
1. The notion of d-hitting families of schedules

2. For anti-chains with n elements, existence of hitting
families of size O(exp(d)·log n)

3. For trees of height h:
• d = 3: explicit construction of hitting families of size 4h (optimal)
• d > 3: explicit construction of hitting families of size O(exp(d)·hd-1)

http://www.mpi-sws.org/~fniksic/

http://www.mpi-sws.org/~fniksic/

