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A banquet is complete if for every pair of ninjas (i, j), 
there’s a course served to ninja i before ninja j.

How many courses make a banquet complete?
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What if ninjas form a hierarchy? 
A master is always served before their student.
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Ninjas at a conference banquet
What if instead of pairs we consider triplets of ninjas? 

A banquet is 3-complete if for every triplet of ninjas (i, j, k), 
there’s a course served to ninja i before j, and j before k.
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Ninjas at a conference banquet
What if instead of pairs we consider triplets of ninjas? 

A banquet is 3-complete if for every triplet of ninjas (i, j, k), 
there’s a course served to ninja i before j, and j before k.

Can be done with O(log n) courses!

Naive approach with 2n courses: 
for each i@{1,…,n}:
serve ancestry line to i; ldfs the rest
serve ancestry line to i; rdfs the rest

admissible



From ninjas to concurrent systems

ninjas 
hierarchy 
courses 

d-complete banquet

events 
partial order 
schedules 

d-hitting family of schedules
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d-hitting families of schedules

Given a poset of events, a family of schedules F is 
d-hitting if for every admissible d-tuple of events there is 
a schedule in F that hits it.

Given a poset of events, a schedule hits a d-tuple of 
events (e1,…,ed) if it executes the events in the order 
e1<…<ed.



Why d?
Empirically: Many bugs involve small number of events—bug depth d

[Lu et al. ASPLOS ’08] [Burckhardt et al. ASPLOS ’10] [Jensen et al. OOPSLA ’15] [Qadeer et al. TACAS ’05] 

• d = 2: order violation 
• d = 3: atomicity violation 

A d-hitting family of schedules provides a notion of coverage: 
it hits any bug of depth d. 

Moreover, for certain kinds of partial orders we can explicitly 
construct small d-hitting families.



Contributions
1. The notion of d-hitting families of schedules 

2. For anti-chains with n elements, existence of hitting 
families of size O(exp(d)·log n) 

3. For trees of height h: 
• d = 3: explicit construction of hitting families of size 4h (optimal) 
• d > 3: explicit construction of hitting families of size O(exp(d)·hd-1)
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Why trees?
AsyncTask1

AsyncTask2 AsyncTask3

• Trees arise from a simple fire-and-forget model of 
asynchronous programs. 

• Trees are a stepping stone to more complicated partial 
orders.
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3-hitting families for trees
admissible (a,b,c)

a
c

b

d

d = lca(a,c)    (could be a itself)

height h

level i ldfs blocking right@i; ldfs the rest
ldfs blocking left@i; ldfs the rest
rdfs blocking right@i; rdfs the rest
rdfs blocking left@i; rdfs the rest

for each i@{0,…,h-1}:

Total: 4h schedules 
(4·log n for a balanced tree)
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d-hitting families for d≥ 4
admissible (x1,…,xd)
D = lca-closure(x1,…,xd)    (an ordered tree)

height h

i1,…,ik — levels of D’s internal nodes
π — schedule of D that hits (x1,…,xd) 

(D, i1,…,ik, π) is a pattern: 
• determines a partition of the tree 
• by scheduling parts according to π, 

determines a schedule that hits (x1,…,xd)

for each pattern:
schedule according to pattern



d-hitting families for d≥ 4
Claim. For any nodes x1,…,xd, |D| ≤ 2d-1. Moreover, D 
has at most d-1 internal nodes.

Accounting: 
• at most exp(d) ordered trees with 2d-1 nodes 
• at most hd-1 choices for levels i1,…,id-1 
• at most d! schedules π 
Total: at most exp(d)·d!·hd-1 patterns



d-hitting families for d≥ 4
Claim. For any nodes x1,…,xd, |D| ≤ 2d-1. Moreover, D 
has at most d-1 internal nodes.

Accounting: 
• at most exp(d) ordered trees with 2d-1 nodes 
• at most hd-1 choices for levels i1,…,id-1 
• at most d! schedules π 
Total: at most exp(d)·d!·hd-1 patterns

Note: For d=3, this is O(h2) instead of O(h) schedules



From hitting families 
to systematic testing

Posets of event need not be static
• Use on-the-fly constructions as a heuristic 

Beyond trees
• Our results extend to series-parallel graphs 
• In general, even the case of d=2 is difficult 

(order dimension [Dushnik & Miller, ’41]) 

Unbalanced trees
• Height h can be close to number of nodes n 
• Use domain-specific properties to first reduce the poset



Summary
1. The notion of d-hitting families of schedules 

2. For anti-chains with n elements, existence of hitting 
families of size O(exp(d)·log n) 

3. For trees of height h: 
• d = 3: explicit construction of hitting families of size 4h (optimal) 
• d > 3: explicit construction of hitting families of size O(exp(d)·hd-1)

http://www.mpi-sws.org/~fniksic/

http://www.mpi-sws.org/~fniksic/

