
Hitting Families of Schedules
for Asynchronous Programs?

Dmitry Chistikov??, Rupak Majumdar, and Filip Niksic

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

{dch,rupak,fniksic}@mpi-sws.org

Abstract. We consider the following basic task in the testing of con-
current systems. The input to the task is a partial order of events, which
models actions performed on or by the system and specifies ordering con-
straints between them. The task is to determine if some scheduling of
these events can result in a bug. The number of schedules to be explored
can, in general, be exponential.
Empirically, many bugs in concurrent programs have been observed to
have small bug depth; that is, these bugs are exposed by every schedule
that orders d specific events in a particular way, irrespective of how the
other events are ordered, and d is small compared to the total number
of events. To find all bugs of depth d, one needs to only test a d-hitting
family of schedules: we call a set of schedules a d-hitting family if for
each set of d events, and for each allowed ordering of these events, there
is some schedule in the family that executes these events in this ordering.
The size of a d-hitting family may be much smaller than the number of
all possible schedules, and a natural question is whether one can find
d-hitting families of schedules that have small size.
In general, finding the size of optimal d-hitting families is hard, even for
d = 2. We show, however, that when the partial order is a tree, one can
explicitly construct d-hitting families of schedules of small size. When the
tree is balanced, our constructions are polylogarithmic in the number of
events.

1 Introduction

Consider the following basic task in systematic testing of programs. We are given
n events a1, a2, . . ., an, and we ask if the execution of some ordering of these
events can cause the program to exhibit a bug. In the worst case, one needs to
run n! tests, one corresponding to each ordering of events. Empirically, though,
many bugs in programs depend on the precise ordering of a small number of
events [13,16,3]. That is, for many bugs, there is some constant d (called the
bug depth, small in comparison to n) and a subset ai1 , . . ., aid of events such
that some ordering of these d events already exposes the bug no matter how
? This research was funded in part by the ERC Synergy award (IMPACT).

?? Present address: Department of Computer Science, University of Oxford, UK.

2

all other events are ordered. This empirical observation is the basis for many
different systematic testing approaches such as context-bounded testing [14],
delay-bounded testing [6], and PCT [3]. Can we do better than n! tests if we
only want to uncover all bugs of depth up to d, for fixed d? An obvious upper
bound on the number of tests is given by(

n

d

)
· d! ≤ nd,

which picks a test for each choice of d events and each ordering of these events.
In this paper, we show that one can do significantly better—in this as well as in
more general settings.

Hitting families of schedules. We consider a more general instance of the
problem, where there is a partial ordering between the n events. A schedule is
a linearization (a linear extension) of the partial order of events. A dependency
between two events a and b in the partial order means that in any test, the event
a must execute before b. For example, a may be an action to open a file and
b an action that reads from the file, or a may be a callback that enables the
callback b.

The depth of a bug is the minimum number of events that must be ordered
in a specific way for the bug to be exposed by a schedule. For example, consider
some two events a and b in the partial order of an execution. If a bug manifests
itself only when a occurs before b, the bug depth is 2. If there are three events
that must occur in a certain order for a bug to appear, the depth is 3, and so on.
For example, an order violation involving two operations is precisely a bug of
depth 2: say, event a writes, event b reads, or vice versa (race condition). Basic
atomicity violation bugs are of depth 3: event a establishes an invariant, b breaks
it, c assumes the invariant established by a; bugs of larger depth correspond to
more involved scenarios and capture more complex race conditions. A schedule
is said to hit a bug if the events that expose the bug occur in the schedule in
the required order. The question we study in this paper is whether it is possible
to find a family of schedules that hits all potential bugs of depth d, for a fixed
d ≥ 2 —we call such a family a d-hitting family of schedules.

For a general partial order, finding an optimal d-hitting family is NP-hard,
even when d = 2 [24]; in fact, even approximating the optimal size is hard [9,4].
Thus, we focus on a special case: when the Hasse diagram of the partial order is
a tree. Our choice is motivated by several concurrent programming models, such
as asynchronous programs [20,11,8] and JavaScript events [17], whose execution
dependencies can be approximated as trees.

Constructing hitting families for trees. For trees and d = 2, it turns out
that two schedules are enough, independent of the number of events in the tree.
These two schedules correspond to leftmost and rightmost DFS (depth-first)
traversals of the tree, respectively.

3

For d > 2 and an execution tree of n events, we have already mentioned
the upper bound of nd for the size of an optimal d-hitting family (cf. delay-
bounded scheduling [6]). Our main technical results show that this family can
be exponentially sub-optimal. For d = 3 and a balanced tree on n nodes, we show
an explicit construction of a 3-hitting family of size O(log n), which is optimal
up to a constant factor. (Our construction works on a more general partial order,
which we call a double tree.) For each d > 3, we show an explicit construction of
a d-hitting family of size f(d) · (log n)d−1, which is optimal up to a polynomial.
Here f(d) is an exponential function depending only on d. As a corollary, the
two constructions give explicit d-hitting families of size O(log n) (for d = 3) and
O((log n)d−1) (for d > 3) for antichains, i.e., for the partial order that has no
dependencies between the n events. We also show a lower bound on the size of d-
hitting families in terms of the height of the tree; in a dual way, for an antichain
of n events, the size of any d-hitting family is at least g(d) · log n for each d > 2.

For a testing scenario where the height of the tree (the size of the maximum
chain of dependencies) is exponentially smaller than its size (the number of
events), our constructions give explicit test suites that are exponentially smaller
than the size—in contrast to previous techniques for systematic testing.

Related work. Our notion of bug depth is similar to bug depth for shared-
memory multi-threaded programs introduced in [3]. The quantity in [3] is defined
as the minimal number of additional constraints that guarantee an occurrence
of the bug. Depending on the bug, this can be between half our d and one less
than our d. Burckhardt et al. [3] show an O(mnd

′−1) family for m threads with
n instructions in total (d′ denotes bug depth according to their definition). Since
multi-threaded programs can generate arbitrary partial orders, it is difficult to
prove optimality of hitting families in this case.

Our notion of d-hitting families is closely related to the notion of order di-
mension for a partial order, defined as the smallest number of linearizations, the
intersection of which gives rise to the partial order [5,23,19]. Specifically, the size
of an optimal 2-hitting family is the order dimension of a partial order, and the
size of an optimal d-hitting family is a natural generalization. To the best of our
knowledge, general d-hitting families have not been studied before for general
partial orders. A version of the dimension (d = 2) called fractional dimension is
known to be of use for approximation of some problems in scheduling theory [2].
Other generalizations of the dimension are also known (see, e.g., [22]), but, to
the best of our knowledge, none of them is equivalent to ours.

Summary. The contribution of this paper is as follows:

– We introduce d-hitting families as a common framework for systematic test-
ing (Section 2). The size of optimal d-hitting families generalizes the order
dimension for partial orders, and the families themselves are natural combi-
natorial objects of independent interest.

– We provide explicit constructions of d-hitting families for trees that are close
to optimal: up to a small constant factor for d = 3 and up to a polynomial for

4

d > 3 (Sections 3–5). Our families of schedules can be exponentially smaller
than the size of the partial order.

We outline some challenges in going from our theoretical constructions to build-
ing practical and automated test generation tools in Section 6.

2 Hitting families of schedules

In this section, we first recall the standard terminology of partial orders, and then
proceed to define schedules (linearizations of these partial orders) and hitting
families of schedules.

Preliminaries: Partial orders. A partial order (also known as a partially
ordered set, or a poset) is a pair (P,≤) where P is a set and ≤ is a binary
relation on P that is:

1) reflexive: x ≤ x for all x ∈ P,
2) antisymmetric: x ≤ y and y ≤ x imply x = y for all x, y ∈ P,
3) transitive: x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈ P.

One typically uses P to refer to (P,≤). We will refer to elements of partial orders
as events; the size of P is the number of events in it, |P|.

The relation x ≤ y is also written as x ≤P y and as y ≥ x; the event x is
a predecessor of y, and y is a successor of x. One writes x < y iff x ≤ y and
x 6= y. Furthermore, x is an immediate predecessor of y (and y is an immediate
successor of x) if x < y but there is no z ∈ P such that x < z < y. The Hasse
diagram of a partial order P is a directed graph where the set of vertices is P
and an edge (x, y) exists if and only if x is an immediate predecessor of y. Partial
orders are sometimes identified with their Hasse diagrams.

Events x and y are comparable iff x ≤ y or y ≤ x. Otherwise they are
incomparable, which is written as x q y. Partial orders (P1,≤1) and (P2,≤2) are
disjoint if P1∩P2 = ∅; the parallel composition (or disjoint union) of such partial
orders is the partial order (P,≤) where P = P1 ∪ P2 and x ≤ y iff x, y ∈ Pk
for some k ∈ {1, 2} and x ≤k y. In this partial order, which we will denote by
P1 ‖ P2, any two events not coming from a single Pk are incomparable: x1 ∈ P1

and x2 ∈ P2 imply x1 q x2.
For a partial order (P,≤) and a subset Q ⊆ P, the restriction of (P,≤) to

Q is the partial order (Q,≤Q) in which, for all x, y ∈ Q, x ≤Q y if and only
if x ≤ y. Instead of ≤Q one usually writes ≤, thus denoting the restriction by
(Q,≤). We will also say that the partial order P contains the partial order Q.
In general, partial orders (P1,≤1) and (P2,≤2) are isomorphic iff there exists an
isomorphism f : P1 → P2: a bijective mapping that respects the ordering, i.e.,
with x ≤1 y iff f(x) ≤2 f(y) for all x, y ∈ P1. Containment of partial orders is
usually understood up to isomorphism.

5

Schedules and their families. A partial order is linear (or total) if all its
events are pairwise comparable. A linearization (linear extension) of the partial
order (P,≤) is a partial order of the form (P,≤′) that is linear and has ≤′ which
is a superset of ≤. We call linearizations (linear extensions) of P schedules. In
other words, a schedule α is a permutation of the elements of P that respects
P, i.e., respects all constraints of the form x ≤ y from P: for all pairs x, y ∈ P,
whenever x ≤P y, it also holds that x ≤α y. We denote the set of all possible
schedules by S(P); a family of schedules for P is simply a subset of S(P).

In what follows, we often treat schedules as words and families of schedules as
languages. Indeed, let P have n elements {v1, . . . , vn}, then any schedule α can
be viewed as a word of length n over the alphabet {v1, . . . , vn} where each letter
occurs exactly once. We say that α schedules events in the order of occurrences
of letters in the word that represents it.

Suppose α1 and α2 are schedules for disjoint partial orders P1 and P2; then
α1 · α2 is a schedule for the partial order P1 ‖ P2 that first schedules all events
from P1 according to α1 and then all events from P2 according to α2. Note that
we will use the · to concatenate schedules (as well as individual events); since
some of our partially ordered sets will contain strings, concatenation “inside” an
event will be denoted simply by juxtaposition.

Admissible tuples and d-hitting families. Fix a partial order P and let
a = (a1, . . . , ad) be a tuple of d ≥ 2 distinct elements of P; we call such tuples
d-tuples. Suppose α is a schedule for P; then the schedule α hits the tuple a if
the restriction of α to the set {a1, . . . , ad} is the sequence a1 · . . . · ad.

Note that for a tuple a to have a schedule that hits a it is necessary and
sufficient that a respect P; this condition is equivalent to the condition that
ai ≤ aj or ai q aj whenever 1 ≤ i ≤ j ≤ d. We call d-tuples satisfying this
condition admissible.

Definition 1 (d-hitting family). A family of schedules F for P is d-hitting if
for every admissible d-tuple a there is a schedule α ∈ F that hits a.

It is straightforward that every P with |P| = n has a d-hitting family of size at
most

(
n
d

)
· d! ≤ nd: just take any hitting schedule for each admissible d-tuple,

of which there are at most
(
n
d

)
· d!. For d = 2, the size of the smallest 2-hitting

family is known as the dimension of the partial order [5,23]. Computing and even
approximating the dimension for general partial orders is known to be a hard
problem [24,9,4]. In the remainder of the paper, we focus on d-hitting families for
specific partial orders, most importantly trees (which can, for instance, approxi-
mate happens-before relations of asynchronous programs). We first consider two
simple examples.

Example 2 (chain). Consider a chain of n events (a linear order): Cn = {1, . . . , n}
with 1 < 2 < . . . < n. This partial order has a unique schedule: α = 1 · 2 · . . . · n;
a d-tuple a = (a1, . . . , ad) is admissible iff a1 < . . . < ad, and α hits all such
d-tuples. Thus, for any d, the family F = {α} is a d-hitting family for Cn.

6

Example 3 (chain with independent event). Consider Cn ‖ {†}, the dis-
joint union of Cn from Example 2 and a singleton {†}. There are n + 1 pos-
sible schedules, depending on how † is positioned with respect to the chain:
α0 = † · 1 · 2 · . . . · n, α1 = 1 · † · 2 · . . . · n, . . . , αn = 1 · 2 · . . . · n · †. For d = 2,
admissible pairs are of the form (i, j) with i < j, (†, i), and (i, †) for all 1 ≤ i ≤ n;
the family F2 = {α0, αn} is the smallest 2-hitting family. Now consider d = 3.
Note that all triples (i, †, i + 1) with 1 ≤ i ≤ n − 1, as well as (†, 1, 2) and
(n−1, n, †), are admissible, and each of them is hit by a unique schedule. There-
fore, the smallest 3-hitting family of schedules consists of all n + 1 schedules:
F3 = {α0, . . . , αn}. For d ≥ 4, it remains to observe that every d-hitting family
is necessarily d′-hitting for 2 ≤ d′ ≤ d, hence F3 is optimal for all d ≥ 3.

An important corollary of this example is that, for any d ≥ 3 and any
partial order P, every d-hitting family must contain at least m + 1 schedules,
where m denotes the maximum number n such that P contains Cn ‖ {†}. This
m is upper-bounded (and this upper bound is tight) by the height of the partial
order P, sometimes called length: the maximal cardinality of a chain (a set of
pairwise comparable events) in P.

3 Hitting families of schedules for trees

3.1 Definitions and overview

Consider a complete binary tree of height h with edges directed from the root.
This tree is the Hasse diagram of a partial order T h, unique up to isomorphism;
we will apply tree terminology to T h itself. The root of T h forms the 0th layer,
its children the 1st layer and so on. The maximum k such that T h has an element
in the kth layer is the height of the tree T h. We will assume that elements of
T h are strings: T h = {0, 1}≤h with x ≤ y for x, y ∈ T h iff x is a prefix of y.
The kth layer of T h is {0, 1}k, and nodes of the hth layer are leaves. Unless
x ∈ T h is a leaf, nodes x 0 and x 1 are left- and right-children of x, respectively.
(Recall that the juxtaposition here denotes concatenation of strings, with the
purpose of distinguishing individual strings and their sequences.) The tree T h
has n = 2h+1 − 1 nodes.

The central question that we study in this paper is as follows: How big are
optimal d-hitting families of schedules for T h with n nodes?

As it turns out, for T h very efficient constructions of d-hitting families exist.
It is, in fact, possible, to find such families that have size exponentially smaller
than n, the number of events. More specifically, we prove the following results
(h is the height of the partial order—the size of the longest chain):

1. For arbitrary d ≥ 3, there is a simple d-hitting family of size O(nd−2)
(Claim 5 in the following subsection 3.2).

2. For d = 3, there is a 3-hitting family of size O(h) (Theorem 7 in Section 4).
3. For arbitrary d ≥ 3, there is a d-hitting family of size O(hd−1) (Theorem 10

in Section 5).

7

Our main technical results are Theorems 7 and 10, shown in the next sections—
where they are stated for complete binary trees, with h = log(n+ 1)− 1. (Arbi-
trary trees are, of course, contained in these complete trees, and our constructions
extend in a natural way.) The remainder of this section is structured as follows.
In subsection 3.2, we prove, as a warm-up, Claim 5. After this, in subsection 3.3,
we show that the problem of finding families of schedules with size smaller than
n turns out to be tricky even when there are no dependencies between events
at all. This problem arises as a sub-problem when considering trees (as, indeed,
there are no dependencies between the leaves in a tree), and thus our main
constructions in Sections 4 and 5 must be at least as agile.

3.2 Warm-up: d-hitting families of size O(nd−2)

Claim 4. The smallest 2-hitting family of schedules for T h has size 2.

The construction is as follows. Take Fdfs = {λ, ρ} where λ and ρ are left-to-right
and right-to-left DFS (depth-first) traversals of T h, respectively. More formally,
these schedules are defined as follows: for x, y ∈ T h, x ≤λ y if either x ≤ y (i.e.,
x is a prefix of y) or x = u 0x′ and y = u 1 y′ for some strings u, x′, y′ ∈ {0, 1}∗;
x ≤ρ y if either x ≤ y or x = u 1x′ and y = u 0 y′. For instance, T 2 has
λ = ε · 0 · 00 · 01 · 1 · 10 · 11 and ρ = ε · 1 · 11 · 10 · 0 · 01 · 00. The family Fdfs is
2-hitting: all admissible pairs (x, y) satisfy either x ≤ y, in which case they are
hit by any possible schedule, or x q y, in which case neither is a prefix of the
other, x = u ax′ and y = u ā y′ with {a, ā} = {0, 1}, so λ and ρ schedule them
in reverse orders. Since it is clear that a family of size 1 cannot be 2-hitting for
T h with h ≥ 1 (as T h contains at least one pair of incomparable elements), the
family Fdfs is optimal.

Based on this construction for d = 2, it is possible to find d-hitting families
for d ≥ 3 that have size o(nd) where n = 2h+1−1 is the number of events in T h:

Claim 5. For any d ≥ 3, T h has a d-hitting family of schedules of size O(nd−2).

Indeed, group all admissible d-tuples a = (a1, . . . , ad) into bags agreeing on
a1, . . . , ad−2. For each bag, construct a pair of schedules λ′ = λ′(a1, . . . , ad−2)
and ρ′ = ρ′(a1, . . . , ad−2) as follows. In both λ′ and ρ′, first schedule a1, . . . , ad−2:
that is, start with an empty sequence of events, iterate over k = 1, . . . , d−2, and,
for each k, append to the sequence all events x ∈ T h such that x ≤ ak. The order
in which these xes are appended is chosen in the unique way that respects the
partial order T h. Events that are predecessors of several ak are only scheduled
once, for the least k. Note that no ak, 1 ≤ k ≤ d, is a predecessor of any aj for
j < k, because otherwise the d-tuple a = (a1, . . . , ad) is not admissible. After
this, the events of T h that have not been scheduled yet form a disjoint union
of several binary trees. The schedule λ′ then schedules all events according to
how the left-to-right DFS traversal λ would work on T h, omitting all events that
have already been scheduled, and the schedule ρ′ does the same based on ρ. As a
result, these two schedules hit all admissible d-tuples that agree on a1, . . . , ad−2;
collecting all such schedules for all possible a1, . . . , ad−2 makes a d-hitting family
for T h of size at most 2nd−2.

8

3.3 Antichains: d-hitting families of size f(d) logn

An antichain is a partial order where every two elements are incomparable:
An = {v1} ‖ {v2} ‖ . . . ‖ {vn}. The set of all schedules for An is Sn, the
set of all permutations, and the set of all admissible d-tuples is the set of all
d-arrangements of these n events.

For our problem of finding hitting families of schedules for trees, considering
antichains is, in fact, an important subproblem. For example, a complete binary
tree with m nodes contains an antichain of size dm/2e: the set of its leaves.
Thus, any d-hitting family of sublinear size for the tree must necessarily extend
a d-hitting family of sublinear size for the antichain—a problem of independent
interest that we study in this section.

Theorem 6. For any d ≥ 3, the smallest d-hitting family for An has size be-
tween g(d) log n − O(1) and f(d) log n, where g(d) ≥ d/2 log(d + 1) and f(d) ≤
d! d.

We sketch the proof of Theorem 6 in the remainder of this section. We will show
how to obtain the upper bound by two different means: with the probabilistic
method and with a greedy approach. From the results of the following section 4
one can extract a derandomization for d = 3, also with size O(log n); and sec-
tion 5 achieves size f(d) · (log n)d−1 for d ≥ 3. In the current section we also
show a lower bound based on a counting argument; the reasoning above demon-
strates that this lower bound for antichains extends to a lower bound for trees
(see Corollary 8).

Upper bound: Probabilistic method. Consider a family of schedules F =
{α1, . . . , αk} where each αi is chosen independently and uniformly at random
from Sn; the parameter k will be chosen later. Fix any admissible a = (a1, . . . , ad).
What is the probability that a specific αi does not hit a? A random permuta-
tion arranges a1, . . . , ad in one of d! possible orders without preference to any
of them, so this probability is 1 − 1/d!. Since all αi are chosen independently,
the probability that none of them hits a is (1− 1/d!)k. By the union bound, the
probability that at least one d-tuple a is not hit by any of αi does not exceed
p = nd · (1− 1/d!)k.

Now observe that this value of p is exactly the probability that F is not a d-
hitting family. If we now choose k in such a way that p < 1, then the probability
of F being a d-hitting family is non-zero, i.e., a d-hitting family of size k exists.
Calculation shows that k > (d! d) log n/ log e suffices.

The probabilistic method, a classic tool in combinatorics, is due to Erdős [1].

Upper bound: Greedy approach. We exploit the following connection be-
tween d-hitting families and set covers. Recall that in a set cover problem one
is given a number of sets, R1, . . . , Rs, and the goal is to find a small number
of these sets whose union is equal to R = R1 ∪ . . . ∪ Rs. A set Ri covers an
element e ∈ R iff e ∈ Ri, and this covering is essentially the same as hitting in

9

d-hitting families: elements e ∈ R are admissible d-tuples a = (a1, . . . , ad), and
each schedule α corresponds to a set Rα that contains all d-tuples a that it hits.
A d-hitting family of schedules is then the same as a set cover.

A well-known approach to the set cover problem is the greedy algorithm,
which in our setting works as follows. Initialize a list of all admissible a =
(a1, . . . , ad); on each step, pick some schedule α that hits the largest number
of tuples in the list, and cross out all these tuples. Terminate when the list is
empty; the set of all picked schedules is a d-hitting family.

While this algorithm can be used for any partial order P, in our case we
can estimate the quality of its output. The so-called greedy covering lemma by
Sapozhenko [18] or a more widely known Lovász-Stein theorem [12,21] gives an
explicit upper bound on the size of the obtained greedy cover in terms of |R| and
the density of the instance (the smallest γ such that every e ∈ R belongs to at
least γs out of s sets). In our case, |R| ≤ nd, and the density is 1/d!; the obtained
upper bound on the size of the smallest d-hitting family is d! d · log n/ log e −
Θ(d! d log d).

Lower bound. Consider the case d = 3. Take any 3-hitting family F =
{α1, . . . , αk} and consider the binary matrix B = (bij) of size k× (n− 1) where
bij = 1 iff the schedule αi places event vj before vn. We claim that all columns
of B are pairwise distinct. Indeed, if for some j′ 6= j′′ and all i it holds that
bij′ = bij′′ , then no schedule from F can place vj′ before vn without also plac-
ing vj′′ before vn, and vice versa. This means that no schedule from F hits the
3-tuples a′ = (vj′ , vn, vj′′) and a′′ = (vj′′ , vn, vj′), so F cannot be 3-hitting.

Since all columns of B are pairwise distinct and B is a 0/1-matrix, it follows
that the number of columns, n − 1, cannot be greater than the number of all
subsets of its rows, 2k. From n − 1 ≤ 2k we deduce that k ≥ log(n − 1). The
construction in the general case d ≥ 3 is analogous.

As we briefly explained above, the lower bound for an antichain of size n
remains valid for any partial order that contains an antichain of size n (as
defined in Section 2). We invoke this argument in Theorem 7 and Corollary 8 in
the following section.

4 3-hitting families of size O(logn)

The goal of this section is to construct 3-hitting families of schedules for trees.
In fact, the construction that we develop is naturally stated for slightly more
involved partial orders, which we call double trees. These double trees are exten-
sions of trees (see Fig. 1). We construct explicit 3-hitting families of schedules
of logarithmic size for double trees, so that restriction of these 3-hitting families
to appropriate subsets of events gives explicit 3-hitting families for trees and for
antichains, also of logarithmic size.

The (binary) double tree of half-height h ≥ 1 is the partial order D defined
as follows. Intuitively, each Dh is a parallel composition (disjoint union) of two
copies of Dh−1, with additional top and bottom (largest and smallest) events;

10

(a) (b)

Fig. 1. (a) A double tree (h = 2); (b) A tree embedded into a double tree

and the induction basis is that D0 consists of a single event. Fig. 1 depicts D2,
the double tree of half-height 2.

More precisely, (the Hasse diagram of) D consists of two complete binary
trees of height h that share their set of 2h leaves; in the first tree, the edges are
directed from the root to the leaves, and in the second tree, from the leaves to
the root. Formally, Dh = {−1,+1} × {0, 1}≤h−1 ∪ {0} × {0, 1}h; note that the
cardinality of this set is 3 · 2h − 2. Each event x = (sx, x

′) ∈ Dh either belongs
to one of the trees (sx ∈ {−1,+1}) or is a shared leaf (sx = 0). We define the
ordering by taking the transitive closure of the following relation: let x = (sx, x

′)
and y = (sy, y

′) be events of Dh; if {sx, sy} ⊆ {−1, 0}, then x ≤ y whenever x′
is a prefix of y′; and if {sx, sy} ⊆ {0,+1}, then x ≤ y whenever y′ is a prefix of
x′. (Note that all events x, y with sx = sy = 0 are pairwise incomparable.)

Theorem 7. The smallest 3-hitting family for the double tree Dh with n =
3 · 2h − 2 events has size between 2h = 2 log n−O(1) and 4h = 4 log n−O(1).

Recall that a double tree with 3·2h−2 events contains a complete binary tree with
2 ·2h−1 nodes, which in turn contains an antichain of size 2h. As a corollary, T h,
a tree with n = 2·2h−1 nodes, has a 3-hitting family of size 4h = 4 log(n+1)−4.
Similarly, An, an antichain of size n = 2h, has a 3-hitting family of size 4 log n.
Unlike the constructions from subsection 3.3, the construction of Theorem 7 is
explicit.

Corollary 8. For an arbitrary (not necessarily balanced) tree of height h, out-
degree at most ∆, and with at least 2 children of the root, the smallest 3-hitting
family has size between h and 4h log ∆.

Note that lower bounds proportional to h follow from Example 3. We describe
the construction of Theorem 7 below.

Matrix notation. We use the following notation for families of schedules. Let
P be a partial order, |P| = n. Let F be a family of schedules for P, |F | = m.
We then write

F =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

11

where F = {α1, . . . , αm} and αi = ai1 ·ai2 · . . . ·ain for 1 ≤ i ≤ m. In other words,
a family of m schedules for an n-sized partial order is written as an m×n-matrix
whose entries are elements of P, with no element appearing more than once in
any row. In particular, if α is a schedule for P, then we represent it with a
row vector. The union of families naturally corresponds to stacking of matrices:

F1 ∪ F2 =

(
F1

F2

)
, and putting two matrices of the same height m next to each

other corresponds to concatenating two families of size m, in order to obtain a
family of size m for the union of two partial orders:

(
F1 F2

)
.

Construction of 3-hitting families for double trees. We define the families
of schedules using induction on h; in matrix notation, the families will be denoted
and structured as follows:

Mh =

[
Ah Bh
Ch Dh

]

where all four blocks are of size (3 · 2h−1 − 1)× 2h; in total, Mh will contain 4h
schedules, each with 3 · 2h − 2 events.

Base case, h = 1:

[
A1 B1

]
=
[
C1 D1

]
=

[
(−1, ε) (0, 0) (0, 1) (+1, ε)
(−1, ε) (0, 1) (0, 0) (+1, ε)

]
.

Note that M1 specifies both possible schedules two times. However, this redun-
dancy disappears in the inductive step.

Inductive step from h ≥ 1 to h + 1: Note that, for ` ∈ {0, 1}, restricting
Dh+1 to events of the form (s, x′) where x′ = ` x′′ leads to a partial order
isomorphic to Dh; these two partial orders are disjoint, and we denote them by
Dh(`), ` ∈ {0, 1}; in fact, Dh(0)∪Dh(1)∪ {(−1, ε), (+1, ε)} forms a partition of
Dh+1. We assume that the matrix Mh is known (the inductive hypothesis); for
` ∈ {0, 1}, we denote its image under the (entry-wise) mapping (s, x′) 7→ (s, ` x′)
by Mh(`). In other words, Mh(`) is the matrix that defines our (soon proved to
be 3-hitting) family of schedules for Dh(`); we will also apply the same notation
to A, B, C, and D.

Finally, we will need two auxiliary schedules for double trees, which we call
left and right traversals. The left traversal λ of Dh+1 is defined inductively as
follows: it first schedules (−1, ε), then takes the left traversal of Dh(0), then
the left traversal of Dh(1), and then schedules (+1, ε). The right traversal ρ is
defined symmetrically. Denote by λ(`) and ρ(`) left and right traversals of Dh(`),

12

respectively (we omit reference to h since this does not create confusion). Then

Ah+1 =

(−1, ε)

... Ah(0) Ah(1)
(−1, ε)
(−1, ε) λ(0)
(−1, ε) λ(1)

 , Bh+1 =

(+1, ε)

Bh(1) Bh(0)
...

(+1, ε)
λ(1) (+1, ε)
λ(0) (+1, ε)

 ,

Ch+1 =

(−1, ε)

... Ch(1) Ch(0)
(−1, ε)
(−1, ε) ρ(0)
(−1, ε) ρ(1)

 , Dh+1 =

(+1, ε)

Dh(0) Dh(1)
...

(+1, ε)
ρ(1) (+1, ε)
ρ(0) (+1, ε)

 .

Our result is that, for each h, Mh is a 3-hitting family of schedules for Dh.
The key part of the proof relies on the following auxiliary property, which is a
stronger form of the 2-hitting condition.

Lemma 9. For any pair of distinct events a = (a1, a2) from Dh, if there is a
schedule for Dh that hits a, then each of the matrices

[
Ah Bh

]
and

[
Ch Dh

]
contains a schedule for Dh where a1 is placed in the first half and a2 is placed
in the second half.

5 d-hitting families for d ≥ 3 of size f(d)(logn)d−1

Fix some d and let T h be a complete binary tree of height h, as defined in
subsection 3.1. In this section we prove the following theorem.

Theorem 10. For any d ≥ 2 the complete binary tree of height h has a d-hitting
family of schedules of size exp(d) · hd−1.

Note that in terms of the number of nodes of T h, which is n = 2h+1 − 1,
Theorem 10 gives a d-hitting family of size polylogarithmic in n. The proof
of the theorem is constructive, and we divide it into three steps. The precise
meaning to the steps relies on auxiliary notions of a pattern and of d-tuples
conforming to a pattern; we give all necessary definitions below.

Lemma 11. For each admissible d-tuple a = (a1, . . . , ad) there exists a pattern p
such that a conforms to p.

Lemma 12. For each pattern p there exists a schedule αp that hits all d-tuples
a that conform to p.

Lemma 13. The total number of patterns, up to isomorphism, does not exceed
exp(d) · hd−1.

13

The statement of Theorem 10 follows easily from these lemmas. The key insight
is the definition of the pattern and the construction of Lemma 12.

In the sequel, for partial orders that are trees directed from the root we will
use the standard terminology for graphs and trees (relying on Hasse diagrams):
node, outdegree, siblings, 0- and 1-principal subtree of a node, isomorphism. We
denote the parent of a node u by paru and the least common ancestor of nodes
u and v by lca(u, v).

If T is a tree and X ⊆ T is a subset of its nodes, then by [X] we denote the
lca-closure of X: the smallest set Y ⊆ T such that, first, X ⊆ Y and, second, for
any y1, y2 ∈ Y it holds that lca(y1, y2) ∈ Y . The following claim is a variation of
a folklore Lemma 1 in [7].

Claim 14. |[X]| ≤ 2 |X| − 1.

Definition 15 (pattern). A pattern is a quintuple p = (D,4, s, `, π) where:

— d ≤ |D| ≤ 2d− 1,
— (D,4) is a partial order which is, moreover, a tree directed from the root,
— the number of non-leaf nodes in (D,4) does not exceed d− 1,
— each node of (D,4) has outdegree at most 2,
— the partial function s : D ⇀ {0, 1} specifies, for each pair of siblings v1, v2 in

(D,4), which is the left and which is the right child of its parent: s(vt) = 0
and s(v3−t) = 1 for some t ∈ {1, 2}; the value of s is undefined on all other
nodes of D,

— the partial function ` : D ⇀ {0, 1, . . . , h − 1} associates a layer with each
non-leaf node of (D,4), so that u ≺ v implies `(u) < `(v); the value of ` is
undefined on all leaves of D, and

— π is a schedule for (D,4).

We remind the reader that the symbol ≤ refers to the same partial order as T h.

Definition 16 (conformance). Take any pattern p = (D,4, s, `, π) and any
tuple a = (a1, . . . , ad) of d distinct elements of the partial order T h. Consider
the set {a1, . . . , ad}: the restriction of ≤ to its lca-closure A = [{a1, . . . , ad}] is a
binary tree, (A,≤). Suppose that the following conditions are satisfied:

a) the trees (D,4) and (A,≤) are isomorphic: there exists a bijective mapping
i : D → A such that v1 4 v2 in D iff i(v1) ≤ i(v2) in T h;

b) the partial function s correctly indicates left- and right-subtree relations: for
any v ∈ D, s(v) = b ∈ {0, 1} if and only if i(v) lies in the b-principal subtree
of i(par(v));

c) the partial function ` correctly specifies the layer inside T h: for any non-leaf
v ∈ D, `(v) = |i(v)|; recall that elements of T h are binary strings from
{0, 1}≤h;

d) the schedule π for (D,4) hits the tuple i−1(a) = (i−1(a1), . . . , i−1(ad)).

Then we shall say that the tuple a conforms to the pattern p.

14

<script >

function loaded () {
document.getElementById(’p’). innerHTML = ’Loaded ’;

}
</script >
<p id="p">Waiting ...</p>

Fig. 2. Example of bugs of depth d = 2 and d = 3 in a web page

We now sketch the proof of Lemma 12. Fix any pattern p = (D,4, s, `, π).
Recall that we need to find a schedule αp that hits all d-tuples a = (a1, . . . , ad)
conforming to p. We will pursue the following strategy. We will cut the tree T h
into multiple pieces; this cutting will be entirely determined by the pattern p,
independent of any individual a. Each piece in the cutting will be associated with
some element c ∈ D, so that each element of D can have several pieces associated
with it. In fact, every piece will form a subtree of T h (although this will be of
little importance). The key property is that, for every d-tuple a = (a1, . . . , ad)
conforming to p, if i is the isomorphism from Definition 16, then each event ak,
1 ≤ k ≤ d, will belong to a piece associated with i−1(ak). As a result, the desired
schedule αp can be obtained in the following way: arrange the pieces according
to how π schedules elements of D and pick any possible schedule inside each
piece. This schedule will be guaranteed to meet the requirements of the lemma.

6 From hitting families to systematic testing

Hitting families of schedules serve as a theoretical framework for systematically
exposing all bugs of small depth. However, bridging the gap from theory to
practice poses several open challenges, which we describe in this section.

To make the discussion concrete, we focus on a specific scenario: testing the
rendering of web pages in the browser. Web pages exhibit event-driven concur-
rency: as the browser parses the page, it concurrently executes JavaScript code
registered to handle various automatic or user-triggered events. Many bugs oc-
cur as a consequence of JavaScript’s ability to manipulate the structure of the
page while the page is being parsed. Previous work shows such bugs are often of
small depth [10,17].

As an example, consider the web page in Fig. 2. In the example, the im-
age (represented by the tag) has an on-load event handler that calls the
function loaded() once the image is loaded. The function, defined in a separate
script block, changes the text of the paragraph p to Loaded. There are two po-
tential bugs in this example. The first one is of depth d = 2, and it occurs if
the image is loaded quickly (for example, from the cache), before the browser
parses the <script> tag. In this case, the on-load handler tries to call an unde-
fined function. The second bug is of depth d = 3, and it occurs if the handler is

15

<script >

function loaded () {
var p = document.getElementById(’p’);
if (p == null) {

setTimeout(loaded , 10);
} else {

p.innerHTML = ’Loaded ’;
}

}
</script >
<p id="p">Waiting ...</p>

Fig. 3. Using a timer to fix the bug from Fig. 2 involving a non-existent element

executed after the <script> tag is parsed, but before the <p> tag is parsed. In
this case, the function loaded() tries to access a non-existent HTML element.

Next, we identify and discuss three challenges.

Events and partial orders need not be static. Our theoretical model as-
sumes a static partially-ordered set of events, and allows arbitrary reordering of
independent (incomparable) events. For the web page in Fig. 2, there are three
parsing events (corresponding to the three HTML tags) and an on-load event.
The parsing events are chained in the order their tags appear in the code. The
on-load event happens after the tag is parsed, but independently of the
other parsing events, giving a tree-shaped partial order.

In more complex web pages, the situation is not so simple. Events may be
executions of scripts with complex internal control-flow and data dependencies,
as well as with effect on the global state. Once a schedule is reordered, new
events might appear, and some events might never trigger. An example showing
a more realistic situation is given in Fig. 3. In order to fix the bug involving a
non-existent HTML element p, the programmer now explicitly checks the result
of getElementById(). If p does not exist (p == null), the programmer sets a
timer to invoke the function loaded() again after 10 milliseconds. As a conse-
quence, depending on what happens first—the on-load event or the parsing of
<p>—we may or may not observe one or more timeout events. Note that the
chain of timeout events also depends on parsing the <script> tag. If the tag
is not parsed, the loaded() function does not exist, so no timer is ever set.
Moreover, the number of timeout events depends on when exactly the <p> tag
is parsed.

The example shows that there is a mismatch between the assumption of
static partially ordered events and the dynamic nature of events occuring in
complex web pages. Ideally, the mismatch should be settled in future work by
explicitly modeling this dynamic nature. However, even the current theory of
hitting families can be applied as a testing heuristic. While we lose completeness

16

(in the sense of hitting all depth-d bugs), we retain the variety of different event
orderings. In the context of web pages, an initial execution of a page gives us
an initial partially ordered set of events. We use it to construct a hitting family
of schedules, which we optimistically try to execute. The approach is based on
the notion of approximate replay, which is employed by R4, a stateless model
checker for web pages [10]. We come back to this approach later in the section.

Another approach is to construct hitting families on the fly : Such a construc-
tion would unravel events and the partial order dynamically during execution,
and non-deterministically construct a schedule from a corresponding hitting fam-
ily. In this way, the issue of reordering events in an infeasible way does not arise,
simply because nothing is reordered. This is in line with how PCT [3] and delay-
bounded scheduling [6] work. On-the-fly constructions of small hitting families
are a topic for future work.

Beyond trees. Our results on trees are motivated by the existing theoretical
models of asynchronous programs [11,8,6], where the partial order induced by
event handlers indeed form trees. However, in the context of web pages, events
need not necessarily be ordered as nodes of a tree. An example of a feature that
introduces additional ordering constraints is deferred scripts. Scripts marked
as deferred are executed after the page has been loaded, and they need to be
executed in the order in which their corresponding <script> tags were parsed
[15]. The tree approximation corresponds to testing the behavior of pages when
the deferred scripts are treated as normal scripts and loaded right away. An open
question is to generalize our construction to other special cases of partial orders
that capture common programming idioms.

Unbalanced trees. For a tree of height h, constructions from Sections 4 and 5
give 3-hitting families of size O(h) and O(h2), respectively. If the tree is balanced,
the cardinality of these families are exponentially smaller than the number of
events in the tree. However, in the web page setting, trees are not balanced.

In order to inspect the shape of partial orders occurring in web pages, we
randomly selected 24 websites of companies listed among the top 100 of Fortune
500 companies. For each website, we used R4 [10] to record an execution and
construct the happens-before relation (the partial order). Table 1 shows the
number of events and the height of the happens-before graph for the websites.
The results indicate that a typical website has most of the events concentrated
in a backbone of very large height, proportional to the total number of events.

The theory shows that going below Θ(h) is impossible in this case unless d <
3; and this can indeed lead to large hitting families: for example, our construction
for h = 1000 and d = 4 corresponds to several million tests. However, not all
schedules of the partial ordering induced by the event handlers may be relevant:
if two events are independent (commute), one need not consider schedules which
only differ in their ordering. Therefore, since hitting families are defined on
an arbitrary partial order, not only on the happens-before order, we can use

17

Table 1. For each website, the table show the number of events in the initial execu-
tion, the height of the partial order (happens-before graph), the number of schedules
generated for d = 3, and the number of schedules for d = 3 with pruning based on
races.

Website # Events Height d = 3 d = 3
(pruned)

abc.xyz 337 288 561 0
newscorp.com 1362 875 2689 100
thehartford.com 2018 1547 3913 138
www.allstate.com 4534 3822 9023 106
www.americanexpress.com 2971 2586 5897 340
www.bankofamerica.com 2305 2095 4561 150
www.bestbuy.com 301 248 576 10
www.comcast.com 188 118 337 16
www.conocophillips.com 4184 3478 8286 248
www.costco.com 7331 6390 14614 364
www.deere.com 2286 1902 4516 236
www.generaldynamics.com 2820 2010 5611 272
www.gm.com 2337 1473 4600 94
www.gofurther.com 1117 638 2154 568
www.homedepot.com 3780 2100 7515 1526
www.humana.com 5611 4325 11174 2058
www.johnsoncontrols.com 2953 2395 5881 450
www.jpmorganchase.com 4134 3519 8247 1316
www.libertymutual.com 3885 3560 7735 324
www.lowes.com 6938 4383 13778 3438
www.massmutual.com 3882 3313 7682 1852
www.morganstanley.com 2752 2301 5402 128
www.utc.com 4081 3266 8100 206
www.valero.com 2116 1849 4178 38

additional information, such as (non-)interference of handlers, to reduce the
partial ordering first.

For web pages, we apply a simple partial order reduction to reduce the size
of the input trees in the following way. We say a pair of events race if they both
access some memory location or some DOM element, with at least one of them
writing to this location or the DOM element. Events that do not participate in
races commute with all other events, so they need not be reordered if our goal
is to expose bugs.

R4 internally uses a race detection tool (EventRacer [17]) to over-approximate
the set of racing events. In order to compute hitting families, we construct a
pruned partial order from the original tree of events. As an example, for d = 3
and the simple O(nd−2) construction, instead of selecting a1 arbitrarily, we select
it from the events that participate in races. We then perform the left-to-right
and right-to-left traversals as usual. In total, the number of generated schedules
is 2r, where r is the number of events participating in races. This number can

18

be significantly smaller than 2n, as can be seen in the fourth (d = 3) and fifth
(d = 3 pruned) columns of Table 1.

7 Conclusions

We have introduced hitting families as the basis for systematic testing of con-
current systems and studied the size of optimal d-hitting families for trees and
related partial orders.

We have shown that a range of combinatorial techniques can be used to
construct d-hitting families: we use a greedy approach, a randomized approach,
and a construction based on DFS traversals; we also develop a direct inductive
construction and a construction based on what we call patterns. The number
of schedules in the pattern-based construction is polynomial in the height—for
balanced trees, this is exponentially smaller than the total number of nodes.

Our development of hitting families was motivated by the testing of asyn-
chronous programs, and we studied the partial ordering induced by the happens-
before relationship on event handlers. While this ordering gives a useful testing
heuristic in scenarios such as rendering of web pages, the notion of hitting fami-
lies applies to any partial ordering, and we leave its further uses to future work.

Acknowledgements. We thank Madan Musuvathi for insightful discussions
and comments.

References

1. Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, 2008. 3rd
edition.

2. Christoph Ambühl, Monaldo Mastrolilli, Nikolaus Mutsanas, and Ola Svensson.
Precedence constraint scheduling and connections to dimension theory of partial
orders. Bulletin of the EATCS, 95:37–58, 2008.

3. Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. A randomized scheduler with probabilistic guarantees of finding bugs.
In Proceedings of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2010, Pittsburgh, Penn-
sylvania, USA, March 13-17, 2010, pages 167–178, 2010.

4. Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Graph prod-
ucts revisited: Tight approximation hardness of induced matching, poset dimen-
sion and more. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans,
Louisiana, USA, January 6-8, 2013, pages 1557–1576. SIAM, 2013.

5. Ben Dushnik and E. W. Miller. Partially ordered sets. American Journal of
Mathematics, 63(3):600–610, 1941.

6. Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. Delay-bounded scheduling.
In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 411–422, 2011.

19

7. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Pla-
nar F-deletion: Approximation, kernelization and optimal FPT algorithms. In
53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012, pages 470–479. IEEE Computer
Society, 2012.

8. Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous
programs. ACM Trans. Program. Lang. Syst., 34(1):6, 2012.

9. Rajneesh Hegde and Kamal Jain. The hardness of approximating poset dimension.
Electronic Notes in Discrete Mathematics, 29:435–443, 2007.

10. Casper Svenning Jensen, Anders Møller, Veselin Raychev, Dimitar Dimitrov, and
Martin T. Vechev. Stateless model checking of event-driven applications. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 57–73,
2015.

11. Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asynchronous
programs. In POPL’07: Proc. 34th ACM SIGACT-SIGPLAN Symp. on Principles
of Programming Languages, pages 339–350. ACM Press, 2007.

12. László Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13(4):383–390, 1975.

13. Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2008, Seattle, WA, USA, March 1-5,
2008, pages 329–339, 2008.

14. Madan Musuvathi and Shaz Qadeer. CHESS: systematic stress testing of con-
current software. In Logic-Based Program Synthesis and Transformation, 16th
International Symposium, LOPSTR 2006, Venice, Italy, July 12-14, 2006, Revised
Selected Papers, pages 15–16, 2006.

15. Boris Petrov, Martin T. Vechev, Manu Sridharan, and Julian Dolby. Race detection
for web applications. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages
251–262, 2012.

16. Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent
software. In Tools and Algorithms for the Construction and Analysis of Systems,
11th International Conference, TACAS 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK,
April 4-8, 2005, Proceedings, pages 93–107, 2005.

17. Veselin Raychev, Martin T. Vechev, and Manu Sridharan. Effective race detection
for event-driven programs. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Languages & Appli-
cations, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, pages 151–166, 2013.

18. Alexander Sapozhenko. On the complexity of disjunctive normal forms obtained
with a gradient algorithm. In Diskretnyj Analiz (Discrete Analysis), volume 21,
pages 62–71. Institute for Mathematics in the Siberian Section of the Academy of
Sciences, Novosibirsk, 1972. In Russian.

19. Bernd S.W. Schröder. Ordered Sets: An Introduction. Springer, 2003.
20. Koushik Sen and Mahesh Viswanathan. Model checking multithreaded programs

with asynchronous atomic methods. In CAV’06: Proc. 18th Int. Conf. on Computer
Aided Verification, volume 4144 of LNCS, pages 300–314. Springer, 2006.

20

21. Sherman K. Stein. Two combinatorial covering theorems. J. Comb. Theory, Ser.
A, 16(3):391–397, 1974.

22. William T. Trotter. A generalization of Hiraguchi’s: Inequality for posets. J. Comb.
Theory, Ser. A, 20(1):114–123, 1976.

23. William T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.
Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University
Press, 2001.

24. Mihalis Yannakakis. The complexity of the partial order dimension problem. SIAM
Journal on Algebraic Discrete Methods, 3(3):351–358, 1982.

	Hitting Families of Schedules for Asynchronous Programs

