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Petri net coverability is 
important, but difficult
• Many verification problems reduce to Petri net 

coverability problem 

• Petri net coverability is EXPSPACE-complete!

• Sophisticated tools and algorithms: 
MIST — Expand-enlarge-check [GRB ’06] 

BFC — Minimal uncoverability proof [KKW ’12] 
IIC — Incremental, inductive coverability [KMNP ’13]



MIST, BFC and IIC don’t 
scale well
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Reducing coverability to 
feasibility of linear constraints 
Method LinCon:!

• Based on marking equation [Murata ’77] 
Incomplete!

• Strengthened with traps [EM ’00] 
Traps — essentially Boolean constraints 
Still incomplete!



Use SMT for linear and Boolean constraints. 
But LinCon is incomplete.!

Does it make sense to 
use it?



Yes! For the right class of examples, 
LinCon is “quite complete”
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Contributions
Main contribution: 
• Extensive experimental evaluation showing that 

LinCon works well!

Also: 
• Using duality of linear programming to derive 

succinct inductive invariants 
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Petri nets are 
state transition systems
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Reachable markings satisfy 
marking equation
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• marking equation [Murata ’77]
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Coverability problem
Given a Petri net with: 
• initial marking m0 

• target marking mt 

Is there a reachable 
marking mr that covers mt? m0

mt

mr



Coverability problem
Given a Petri net with: 
• initial marking m0 

• target marking mt 

Is there a reachable 
marking mr that covers mt? m0

mt

mr

If mt is not coverable, Petri net is safe.



Adding coverability constraint to 
marking equation yields basic LinCon

If the constraints are not feasible, the Petri net is safe.

M = m0 + CX

M � mt

X � 0



Strengthening LinCon using 
traps [EM ’00]
Trap — set of places such that every transition that 
consumes tokens from it also puts tokens into it.
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Strengthening LinCon using 
traps [EM ’00]
Trap — set of places such that every transition that 
consumes tokens from it also puts tokens into it.

If a trap is marked, 
it stays marked.
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LinCon with traps [EM ’00]
no solution 
safe

M = mr

X = xr

Is there a trap 
• initially marked 
• empty at mr

no solution 
inconclusive

SAT query:

Tp =

(
1, p in trap

0, otherwise

M = m0 + CX

M � mt

X � 0

T ⌧M � 1
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The origin of examples
• MIST — https://github.com/pierreganty/mist 

Examples from the literature 

• BFC — http://www.cprover.org/bfc/ 
Examples from verification of concurrent C programs 

• Provenance verification for message-passing 
programs [MMW ’13] 

Examples modeling a medical system and a bug-tracking system 

• SOTER — http://mjolnir.cs.ox.ac.uk/soter/ [DKO ’13] 
Examples from verification of Erlang programs 
Contains a Petri net with 66,950 places and 213,625 transitions

https://github.com/pierreganty/mist
http://www.cprover.org/bfc/
http://mjolnir.cs.ox.ac.uk/soter/


Main point here: 
LinCon works well even 
without traps
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“quite complete”



If LinCon were combined 
with other tools
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Summary
• We’ve revisited a linear constraint approach to 

Petri net coverability 
• LinCon is incomplete, but useful 

… on its own 
… as a cheap preprocessing step in other tools 


