
An SMT-Based Approach 
to Coverability Analysis

Javier Esparza1, Ruslán Ledesma-Garza1, 
Rupak Majumdar2, Philipp Meyer1, Filip Niksic2

1 Technische Universität München 
2 MPI-SWS



Petri net coverability is 
important, but difficult
• Many verification problems reduce to Petri net 

coverability problem 

• Petri net coverability is EXPSPACE-complete!

• Sophisticated tools and algorithms: 
MIST — Expand-enlarge-check [GRB ’06] 

BFC — Minimal uncoverability proof [KKW ’12] 
IIC — Incremental, inductive coverability [KMNP ’13]



MIST, BFC and IIC don’t 
scale well

Examples proved safe

23

46

69

92

115

MIST BFC IIC Together

64
51

61

33



Reducing coverability to 
feasibility of linear constraints 
Method LinCon:!

• Based on marking equation [Murata ’77] 
Incomplete!

• Strengthened with traps [EM ’00] 
Traps — essentially Boolean constraints 
Still incomplete!



Use SMT for linear and Boolean constraints. 
But LinCon is incomplete.!

Does it make sense to 
use it?



Yes! For the right class of examples, 
LinCon is “quite complete”

Examples proved safe

23

46

69

92

115

MIST BFC IIC Together LinCon

96

64
51

61

33



Yes! For the right class of examples, 
LinCon is “quite complete”

Examples proved safe

23

46

69

92

115

MIST BFC IIC Together LinCon

96

64
51

61

33

All but one example 
in under 100 s



Contributions
Main contribution: 
• Extensive experimental evaluation showing that 

LinCon works well!

Also: 
• Using duality of linear programming to derive 

succinct inductive invariants 



Contributions
Main contribution: 
• Extensive experimental evaluation showing that 

LinCon works well!

Also: 
• Using duality of linear programming to derive 

succinct inductive invariants 



In this talk

Petri nets 
and LinCon

Experiments



In this talk

Petri nets 
and LinCon

Experiments



Petri nets are 
state transition systems

x
y

z

s

t

r



Petri nets are 
state transition systems

x
y

z

s

t

r

transitions

places

token



Petri nets are 
state transition systems

x
y

z

s

t

r

transitions

places

token
(0, 1, 0)

initial marking



Petri nets are 
state transition systems

x
y

z

s

t

r

transitions

places

token
(0, 1, 0)

initial marking



Petri nets are 
state transition systems

x
y

z

s

t

r

transitions

places

token
(0, 1, 0)

(1, 1, 0)

initial marking

+(1, 0, 0)



Petri nets are 
state transition systems

x
y

z

s

t

r

transitions

places

token
(0, 1, 0)

(1, 1, 0)

initial marking

+(1, 0, 0)



Petri nets are 
state transition systems

x
y

z

s

t

r

transitions

places

token
(0, 1, 0)

(1, 1, 0)

(0, 1, 1)

initial marking

+(1, 0, 0)

+(-1, 0, 1)



Petri nets are 
state transition systems

x
y

z

s

t

r

transitions

places

token
(0, 1, 0)

(1, 1, 0)

(0, 1, 1)

initial marking

reachable markings

+(1, 0, 0)

+(-1, 0, 1)



Reachable markings satisfy 
marking equation

x
y

z

s

t

r

2

4
x

y

z

3

5 =

2

4
0
1
0

3

5+

2

4
1 �1 0
0 0 0
0 1 �1

3

5

2

4
s

t

r

3

5

Ignore the order of transitions: 
• marking equation [Murata ’77]



Reachable markings satisfy 
marking equation

x
y

z

s

t

r

Ignore the order of transitions: 
• marking equation [Murata ’77]

transition 
vector

incidence 
matrix

initial 
marking

marking 
vector

M = m0 + CX



Coverability problem
Given a Petri net with: 
• initial marking m0 

• target marking mt 

Is there a reachable 
marking mr that covers mt? m0

mt

mr



Coverability problem
Given a Petri net with: 
• initial marking m0 

• target marking mt 

Is there a reachable 
marking mr that covers mt? m0

mt

mr

If mt is not coverable, Petri net is safe.



Adding coverability constraint to 
marking equation yields basic LinCon

If the constraints are not feasible, the Petri net is safe.

M = m0 + CX

M � mt

X � 0



Strengthening LinCon using 
traps [EM ’00]
Trap — set of places such that every transition that 
consumes tokens from it also puts tokens into it.

x

y

z



Strengthening LinCon using 
traps [EM ’00]
Trap — set of places such that every transition that 
consumes tokens from it also puts tokens into it.

x

y

z



Strengthening LinCon using 
traps [EM ’00]
Trap — set of places such that every transition that 
consumes tokens from it also puts tokens into it.

If a trap is marked, 
it stays marked.

x

y

z



Strengthening LinCon using 
traps [EM ’00]
Trap — set of places such that every transition that 
consumes tokens from it also puts tokens into it.

If a trap is marked, 
it stays marked.

x

y

z

x+ y � 1



LinCon with traps [EM ’00]
M = m0 + CX

M � mt

X � 0



LinCon with traps [EM ’00]
M = m0 + CX

M � mt

X � 0

no solution 
safe



LinCon with traps [EM ’00]
M = m0 + CX

M � mt

X � 0

no solution 
safe

M = mr

X = xr



LinCon with traps [EM ’00]
M = m0 + CX

M � mt

X � 0

no solution 
safe

M = mr

X = xr

Is there a trap 
• initially marked 
• empty at mr



LinCon with traps [EM ’00]
M = m0 + CX

M � mt

X � 0

no solution 
safe

M = mr

X = xr

Is there a trap 
• initially marked 
• empty at mr

SAT query:



LinCon with traps [EM ’00]
M = m0 + CX

M � mt

X � 0

no solution 
safe

M = mr

X = xr

Is there a trap 
• initially marked 
• empty at mr

no solution 
inconclusive

SAT query:



LinCon with traps [EM ’00]
M = m0 + CX

M � mt

X � 0

no solution 
safe

M = mr

X = xr

Is there a trap 
• initially marked 
• empty at mr

no solution 
inconclusive

SAT query:

Tp =

(
1, p in trap

0, otherwise



LinCon with traps [EM ’00]
no solution 
safe

M = mr

X = xr

Is there a trap 
• initially marked 
• empty at mr

no solution 
inconclusive

SAT query:

Tp =

(
1, p in trap

0, otherwise

M = m0 + CX

M � mt

X � 0

T ⌧M � 1



In this talk

ExperimentsPetri nets 
and LinCon



In this talk

ExperimentsPetri nets 
and LinCon



The origin of examples
• MIST — https://github.com/pierreganty/mist 

Examples from the literature 

• BFC — http://www.cprover.org/bfc/ 
Examples from verification of concurrent C programs 

• Provenance verification for message-passing 
programs [MMW ’13] 

Examples modeling a medical system and a bug-tracking system 

• SOTER — http://mjolnir.cs.ox.ac.uk/soter/ [DKO ’13] 
Examples from verification of Erlang programs 
Contains a Petri net with 66,950 places and 213,625 transitions

https://github.com/pierreganty/mist
http://www.cprover.org/bfc/
http://mjolnir.cs.ox.ac.uk/soter/


Main point here: 
LinCon works well even 
without traps



LinCon without traps is fast
B

FC
 (t

im
e 

in
 s

ec
)

0,01

0,1

1

10

100

1000

10000

100000

LinCon (time in sec)
0,01 0,1 1 10 100 1000 10000 100000



LinCon without traps is fast
B

FC
 (t

im
e 

in
 s

ec
)

0,01

0,1

1

10

100

1000

10000

100000

LinCon (time in sec)
0,01 0,1 1 10 100 1000 10000 100000

30 min



LinCon without traps is fast
B

FC
 (t

im
e 

in
 s

ec
)

0,01

0,1

1

10

100

1000

10000

100000

LinCon (time in sec)
0,01 0,1 1 10 100 1000 10000 100000

30 min
25 s



LinCon without traps is fast
B

FC
 (t

im
e 

in
 s

ec
)

0,01

0,1

1

10

100

1000

10000

100000

LinCon (time in sec)
0,01 0,1 1 10 100 1000 10000 100000

30 min
25 s 2 h



LinCon is “quite complete”

Examples proved safe

23

46

69

92

115

MIST BFC IIC Together LinCon

96

64
51

61

33



Examples proved safe

23

46

69

92

115

MIST BFC IIC Together LinCon

96

64
51

61

33

Examples proved safe

23

46

69

92

115

MIST BFC IIC Together LinCon

84
64

51
61

33

LinCon without traps is 
“quite complete”



If LinCon were combined 
with other tools

Examples proved safe

23

46

69

92

115

BFC BFC+LinCon Together Together+LinCon

107105

6461



Summary
• We’ve revisited a linear constraint approach to 

Petri net coverability 
• LinCon is incomplete, but useful 

… on its own 
… as a cheap preprocessing step in other tools 


