
Incremental, Inductive Coverability

Johannes Kloos, Rupak Majumdar, Filip Niksic, and Ruzica Piskac

MPI-SWS, Kaiserslautern and Saarbrücken

Abstract. We give an incremental, inductive (IC3) procedure to check
coverability of well-structured transition systems. Our procedure gener-
alizes the IC3 procedure for safety verification that has been success-
fully applied in finite-state hardware verification to infinite-state well-
structured transition systems. We show that our procedure is sound,
complete, and terminating for downward-finite well-structured transition
systems —where each state has a finite number of states below it— a
class that contains extensions of Petri nets, broadcast protocols, and
lossy channel systems.
We have implemented our algorithm for checking coverability of Petri
nets. We describe how the algorithm can be efficiently implemented
without the use of SMT solvers. Our experiments on standard Petri
net benchmarks show that IC3 is competitive with state-of-the-art im-
plementations for coverability based on symbolic backward analysis or
expand-enlarge-and-check algorithms both in time and space usage.

1 Introduction

The IC3 algorithm [3] was recently introduced as an efficient technique for safety
verification of hardware. It computes an inductive invariant by maintaining a
sequence of over-approximations of forward-reachable states, and incrementally
strengthening them based on counter-examples to inductiveness. The counter-
examples are obtained using a backward exploration from error states. Efficient
implementations of the procedure show remarkably good performance on hard-
ware benchmarks [8].

A natural direction is to extend the IC3 algorithm to classes of systems
beyond finite-state hardware circuits. Indeed, an IC3-like technique was recently
proposed for interpolation-based software verification [5], and the technique was
generalized to finite-data pushdown systems, as well as systems using linear real
arithmetic, such as timed pushdown automata [15]. It is natural to ask for what
other classes of infinite-state systems does IC3 form a decision procedure for
safety verification.

In this paper, we consider well-structured transition systems (WSTS) [1,12].
WSTS are infinite-state transition systems whose states have a well-quasi-or-
dering, and whose transitions satisfy a monotonicity property w.r.t. the quasi-
ordering. WSTS capture many important infinite-state models, such as Petri
nets and their monotonic extensions [11,4,7,13], broadcast protocols [9,10], and
lossy channel systems [2]. A general decidability result shows that the coverabil-
ity problem (reachability in an upward-closed set) is decidable for WSTS [1]. The

decidability result performs a backward reachability analysis, and shows, using
properties of well-quasi-orderings, that the reachability procedure must termi-
nate. In many verification problems, techniques based on computing inductive
invariants outperform methods based on backward or forward reachability anal-
ysis; indeed, IC3 for hardware circuits is a prime example. Thus, it is natural to
ask if there is an IC3-style decision procedure for the coverability problem.

We answer this question positively. We give a generalization of IC3 for WSTS,
and show that it terminates on the class of downward-finiteWSTS, in which each
state has a finite number of states lower than itself in the well-quasi-ordering.
The class of downward-finite WSTS contains most important classes of WSTS
used in verification, including Petri nets and their extensions, broadcast proto-
cols, and lossy channel systems. Hence, our results show that IC3 is a decision
procedure for the coverability problem for these classes of systems. While ter-
mination is trivial in the finite-state case, our technical contribution is to show,
using the termination of the backward reachability procedure, that the sequence
of (downward-closed) invariants produced by IC3 is guaranteed to converge. We
also show that the assumption of downward-finiteness is necessary: we give an
example of a general WSTS on which the algorithm does not terminate.

We have implemented our algorithm in a tool called IIC to check coverability
in Petri nets. Using combinatorial properties of Petri nets, we derive an opti-
mized implementation of the algorithm that does not use an SMT solver. Our
implementation outperforms, both in space and time usage, several other imple-
mentations of coverability, such as EEC [13] or backward reachability, on a set
of standard Petri net benchmarks.

A full version, including proofs of theorems, is available on arXiv [17].

2 Preliminaries

Well-quasi-orderings. For a set X, a relation �⊆ X ×X is a well-quasi-ordering
(wqo) if it is reflexive, transitive, and if for every infinite sequence x0, x1, . . . of
elements from X, there exists i < j such that xi � xj . A set Y ⊆ X is upward-
closed if for every y ∈ Y and x ∈ X, y � x implies x ∈ Y . Similarly, a set Y ⊆ X
is downward-closed if for every y ∈ Y and x ∈ X, x � y implies x ∈ Y . For a set
Y , we define its upward closure Y ↑ = {x | ∃y ∈ Y, y � x}. For a singleton {x}, we
simply write x ↑ instead of {x} ↑. Similarly, we define Y ↓ = {x | ∃y ∈ Y, x � y}
for the downward closure of a set Y . Clearly, Y ↑ (resp., Y ↓) is an upward-closed
set (resp. downward-closed) for each Y . The union and intersection of upward-
closed sets are upward-closed, and the union and intersection of downward-closed
sets are downward-closed. Furthermore, the complement of an upward-closed set
is downward-closed, and vice versa. For the convenience of the reader, we will
mark upward-closed sets with a small up-arrow superscript, like this: U↑, and
downward-closed sets with a small down-arrow superscript, like this: D↓.

A basis of an upward-closed set Y is a set Yb ⊆ Y such that Y =
⋃
y∈Yb

y ↑.
It is known [14,1,12] that any upward-closed set Y in a wqo has a finite basis:
the set of minimal elements of Y has finitely many equivalence classes under

the equivalence relation � ∩ �, so take any system of representatives. We write
minY for such a system of representatives. Moreover, it is known that any non-
decreasing sequence I0 ⊆ I1 ⊆ . . . of upward-closed sets eventually stabilizes,
i.e., there exists k ∈ N such that Ik = Ik+1 = Ik+2 =

A wqo (X,�) is downward-finite if for each x ∈ X, the downward closure x ↓
is a finite set.
Examples. Let Nk be the set of k-tuples of natural numbers, and let � be point-
wise comparison: v � v′ if vi 6 v′i for i = 1, . . . , k. Then, (Nk,�) is a downward-
finite wqo [6].

Let A be a finite alphabet, and consider the subword ordering � on words
over A, given by w � w′ for w,w′ ∈ A∗ if w results from w′ by deleting some
occurrences of symbols. Then (A∗,�) is a downward-finite wqo [14].
Well-structured Transition Systems. A well-structured transition system (WSTS
for short) is a tuple (Σ, I,→,�) consisting of a set Σ of states, a finite set
I ⊆ Σ of initial states, a transition relation →⊆ Σ × Σ, and a well-quasi-
ordering �⊆ Σ × Σ with the monotonicity property: for all s1, s2, t1 ∈ Σ such
that s1 → s2 and s1 � t1, there exists t2 such that t1 → t2 and s2 � t2. A WSTS
is downward-finite if (Σ,�) is downward-finite.

Let x, y ∈ Σ. If x → y, we call x a predecessor of y, and y a successor
of x. We write pre(x) := {y | y → x} for the set of predecessors of x, and
post(x) := {y | x → y} for the set of successors of x. For X ⊆ Σ, pre(X)
and post(X) are defined as natural extensions, i.e., pre(X) =

⋃
x∈X pre(x) and

post(X) =
⋃
x∈X post(x).

We write x→k y if there are states x0, . . . , xk ∈ Σ such that x0 = x, xk = y
and xi → xi+1 for 0 ≤ i < k. Furthermore, x→∗ y iff there exists a k > 0 such
that x →k y, i.e., →∗ is the reflexive and transitive closure of →. We say that
there is a path of length k from x to y if x→k y, and that there is a path from
x to y if x→∗ y.

The set of k-reachable states Reachk is the set of states reachable in at most
k steps, formally, Reachk := {y ∈ Σ | ∃k′ 6 k, ∃x ∈ I, x →k′

y}. The set of
reachable states Reach :=

⋃
k≥0 Reachk = {y | ∃x ∈ I, x →∗ y}. Using down-

ward closure, we can define the k-th cover Coverk and the cover Cover of the
WSTS as Coverk := Reachk ↓ and Cover := Reach ↓. The coverability problem for
WSTS asks, given a WSTS (Σ, I,→,�) and a downward-closed set P ↓, if every
reachable state is contained in P ↓, i.e., if Reach ⊆ P ↓. It is easy to see that this
question is equivalent to checking if Cover ⊆ P ↓.

In the following, we make some standard effectiveness assumptions on WSTS
[1,12]. We assume that � is decidable, and that for any state x ∈ Σ, there is a
computable procedure that returns a finite basis for pre(x ↑). These assumptions
are met by most classes of WSTS considered in verification [12].

Under the preceding effectiveness assumptions, one can show that the cover-
ability problem is decidable for WSTS by a backward-search algorithm [1]. The
main construction is the following sequence of upward-closed sets:

U↑0 := Σ \ P ↓ , U↑i+1 := U↑i ∪ pre(U↑i) . (BackwardReach)

The sequence of sets U↑i forms an increasing chain of upward-closed sets, therefore
it eventually stabilizes: there is some L such that U↑L = U↑L+i for all i ≥ 0. Then,
Cover ⊆ P ↓ iff I ∩ U↑L = ∅. Moreover, if I ∩ U↑L = ∅, then Σ \ U↑L contains I, is
contained in P ↓ and satisfies post(Σ \ U↑L) ⊆ Σ \ U↑L.

We generalize from Σ \ U↑L to the notion of an (inductive) covering set.
A downward-closed set C↓ is called a covering set for P ↓ iff (a) I ⊆ C↓, (b)
C↓ ⊆ P ↓, and (c) post(C↓) ⊆ C↓. By induction, we have Cover ⊆ C↓ ⊆ P ↓ for
any covering set C↓. Therefore, to solve the coverability problem, it is sufficient
to exhibit any covering set.

3 IC3 for Coverability

We now describe an algorithm for the coverability problem that takes as input
a WSTS (Σ, I,→,�) and a downward-closed set P ↓, and constructs either a
path from some state in I to a state not in P ↓ (if Cover 6⊆ P ↓), or a covering
set for P ↓. In the algorithm we consider sets that are not necessarily inductive
by themselves, but they are inductive relative to some other sets. Relative in-
ductivity is a weakening of the regular notion of inductivity. Formally, for a set
R↓ such that I ⊆ R↓, a downward-closed set S↓ is inductive relative to R↓ if
I ⊆ S↓ and post(R↓ ∩ S↓) ⊆ S↓. An upward-closed set U↑ is inductive relative
to R↓ if its downward-closed complement Σ \U↑ is inductive relative to R↓, i.e.
if I ∩ U↑ = ∅ and post(R↓ \ U↑) ⊆ Σ \ U↑.

The condition post(R↓ ∩ S↓) ⊆ S↓ is equivalent to pre(Σ \ S↓) ∩ R↓ ∩ S↓ =
∅. Stated in terms of an upward-closed set U↑, the equivalent condition is
pre(U↑) ∩ R↓ \ U↑ = ∅. Since all these conditions are equivalent, we will use
them interchangeably.

3.1 Algorithm

The core idea of the algorithm is to build a vector R = (R↓0, . . . , R
↓
N), consisting

of sets R↓i which over-approximate Coveri. The algorithm ensures that R↓i+1 is
inductive relative to R↓i in each step, and that R↓i ⊆ P ↓ for i < N . This allows
us to prove that if the vector stabilizes, we have found an inductive covering set.

The algorithm alternates between trying to find a counter-example and re-
fining the over-approximations. A backward search looks for counter-examples.
Whenever a candidate counter-example is revealed to be spurious, the vector R
is refined to exclude this counter-example. In particular, counter-example traces
are constructed such that if a0 · · · aN is a counter-example, then ai ∈ R↓i . If it
can be shown that ai ∈ R↓i , but the counter-example cannot be extended back-
wards beyond R↓i , the set R

↓
i is refined. In particular, some state b is found such

that removing b ↑ from R↓0, . . . , R
↓
i gives a new over-approximation vector that

still satisfies all invariants, and a ∈ b ↑.
When no progress can be made in refining the current vector or in finding

counter-examples, N is increased, and a second strengthening step is carried

[Initialize]
init 7→ I ↓ | ∅

[Valid]
R↓i = R↓i+1 for some i < N

R | Q 7→ valid

[CandidateNondet]
a ∈ R↓N \ P

↓

R | ∅ 7→ R | 〈a,N〉
[Model]

minQ = 〈a, 0〉
R | Q 7→ invalid

[DecideNondet]
minQ = 〈a, i〉 i > 0 b ∈ pre(a ↑) ∩R↓i−1 \ a ↑

R | Q 7→ R | Q.Push(〈b, i− 1〉)

[Conflict]
minQ = 〈a, i〉 i > 0 pre(a ↑) ∩R↓i−1 \ a ↑ = ∅ b ∈ Geni−1(a)

R | Q 7→ R[R↓k ← R↓k \ b ↑]
i
k=1 | Q.PopMin

[Induction]
R↓i = Σ \ {ri,1, . . . , ri,m} ↑ b ∈ Geni(ri,j) for some 1 ≤ j ≤ m

R | ∅ 7→ R[R↓k ← R↓k \ b ↑]
i+1
k=1 | ∅

[Unfold]
R↓N ⊆ P

↓

R | ∅ 7→ R ·Σ | ∅

Fig. 1. The rule system for a IC3-style algorithm for WSTS – generic version. The
map Geni is defined in equation (1).

out, in which states in R↓i that can be proven to be unreachable from R↓i−1 are
removed. This strengthening step is known as induction.

Figure 1 shows the algorithm as a set of non-deterministic state transition
rules, similar to [15]. A state of the computation is either the initial state init,
the special terminating states valid and invalid, or a pair R | Q defined as follows.

The first component of the pair is a vector R of downward-closed sets, indexed
starting from 0. The elements of R are denoted R↓i . In particular, we denote by
R↓0 the downward closure of I, i.e., R↓0 = I ↓. These sets contain successive
approximations to a potential covering set. The function length gives the length
of the vector, disregarding R↓0, i.e., length(R↓0, . . . , R

↓
N) = N . If it is clear from

the context which vector is meant, we often abbreviate length(R) simply with N .
We write R ·X for the concatenation of the vector R with the downward-closed
set X: (R↓0, . . . , R

↓
N) ·X = (R↓0, . . . , R

↓
N , X).

The second component of the pair is a priority queue Q, containing elements
of the form 〈a, i〉, where a ∈ Σ is a state and i ∈ N is a natural number. The
priority of the element is given by i, and is called the level of the element.
The statement 〈a, i〉 ∈ Q means that the priority queue contains an element
〈a, i〉, while with minQ we denote the minimal element of the priority queue.
Furthermore, Q.PopMin yields Q after removal of its minimal element, and
Q.Push(x) yields Q after adding element x.

The elements of Q are states that lead outside of P ↓. Let 〈a, i〉 be an element
of Q. Either a is a state that is in Ri and outside of P ↓, or there is a state b
leading outside of P ↓ such that a ∈ pre(b ↑). Our goal is to try to discard those
states and show that they are not reachable from the initial states, as Ri denotes

an over-approximation of the states reachable in i or less steps. If an element of
Q is reachable from the initial states, then Cover 6⊆ P ↓.

The state valid signifies that the search has terminated with Cover ⊆ P ↓,
while invalid signifies that the algorithm has terminated with Cover 6⊆ P ↓. In the
description of the algorithm, we will omit the actual construction of certificates
and instead just state that the algorithm terminates with invalid or valid; the
calculation of certificates is straightforward.

The transition rules of the algorithm are of the form

[Name] C1 · · · Ck
σ 7→ σ′

(Rule)

and can be read thus: whenever the algorithm is in state σ and conditions C1–Ck
are fulfilled, the algorithm can apply rule [Name] and transition to state σ′. We
write σ 7→ σ′ if there is some rule which the algorithm applies to go from σ to
σ′. We write 7→∗ for the reflexive and transitive closure of 7→.

Let Inv be a predicate on states. We say that a rule preserves the invariant
Inv if whenever σ satisfies Inv and conditions C1 to Ck are met, it also holds that
σ′ satisfies Inv.

Two of the rules use the map Geni : Σ → 2Σ . It yields those states that are
valid generalizations of a relative to some set R↓i . A state b is a generalization
of the state a relative to the set R↓i , if b � a and b ↑ is inductive relative to R↓i .
Formally,

Geni(a) := {b | b � a ∧ b ↑∩I = ∅ ∧ pre(b ↑) ∩R↓i \ b ↑ = ∅} . (1)

Finally, the notation R[R↓k ← R′
↓
k]ik=1 means that R is transformed by replacing

R↓k by R′↓k for each k = 1, . . . , i, i.e.,

R[R↓k ← R′
↓
k]ik=1 = (R↓0, R′

↓
1, . . . , R

′↓
i , R

↓
i+1, . . . , R

↓
N).

We provide an overview of each rule of the calculus.

[Initialize] The algorithm starts by defining the first downward-closed set R↓0 to
be the downward closure of the initial state.

[CandidateNondet] If there is a state a such that a ∈ R↓N , but at the same time
it is not an element of P ↓, we add 〈a,N〉 to the priority queue Q.

[DecideNondet] To check if the elements of Q are spurious counter-examples, we
start by processing an element a with the lowest level i. If there is an element
b in R↓i−1 such that b ∈ pre(a ↑), then we add 〈b, i− 1〉 to the priority queue.

[Model] If Q contains a state a from the level 0, then we have found a counter-
example trace and the algorithm terminates in the state invalid.

[Conflict] If none of predecessors of a state a from the level i is contained in
R↓i−1 \ a ↑, then a belongs to a spurious counter-example trace. Therefore,
we update the downward-closed sets R↓1, . . . , R

↓
i as follows: since the states

in a ↑ are not reachable in i steps, they can be safely removed from all the
sets R↓1, . . . , R

↓
i . Moreover, instead of a ↑ we can remove even a bigger set

b ↑, for any state b which is a generalization of the state a relative to R↓i−1,
as defined in (1). After the update, we remove 〈a, i〉 from the priority queue.
In practice, if i < N , we also add 〈a, i+ 1〉 to the priority queue. This allows
the construction of paths that are longer than N in a given search, which
speeds up search significantly (see [3]). It also justifies the use of a priority
queue for Q, instead of a stack. We omit this modification in our rules to
simplify proofs.

[Induction] If for some state ri,j that was previously removed from R↓i , a set ri,j ↑
becomes inductive relative to R↓i (i.e. post(R↓i \ ri,j ↑) ⊆ Σ \ ri,j ↑), none of
the states in ri,j ↑ can be reached in at most i+ 1 steps. Thus, we can safely
remove ri,j ↑ from R↓i+1 as well. Similarly as in [Conflict], we can even remove
b ↑ for any generalization b ∈ Geni(ri,j).

[Valid] If there is a downward-closed set R↓i such that R↓i = R↓i+1, the algorithm
terminates in the state valid.

[Unfold] If the priority queue is empty and all elements of R↓N are in P ↓, we
start with a construction of the next set R↓N+1. Initially, R

↓
N+1 contains all

the states, R↓N+1 = Σ, and we append R↓N+1 to the vector R.
In an implementation, these rules are usually applied in a specific way. The
algorithm generally proceeds in rounds consisting of two phases: backward search
and inductive strengthening.

In the backward search phase, the algorithm tries to construct a path a0 · · · aN
from I to Σ \ P ↓, with ai ∈ R↓i . The path is built backwards from R↓N , by first
finding a possible end-point using [CandidateNondet]. Next, [DecideNondet] is ap-
plied to prolong the path, until R↓0 is reached (as witnessed by [Model]). If the
path cannot be prolonged at ai, [Conflict] is applied to refine the sets R↓1, . . . , R

↓
i ,

removing known-unreachable states (including ai), and the search backtracks one
step. If the backward search phase ends unsuccessfully, i.e. no more paths can
be constructed, [Unfold] is applied.

In the inductive strengthening phase, [Induction] is repeatedly applied until
its pre-conditions fail to hold. After that, it is checked whether [Valid] applies.
If not, the algorithm proceeds to the next round.

3.2 Soundness
We first show that the algorithm is sound: if it terminates, it produces the right
answer. If it terminates in the state invalid, there is a path from an initial state
to a state outside of P ↓, and if it terminates in the state valid, then Cover ⊆ P ↓.

We prove soundness by showing that on each state R | Q the following
invariants are preserved by the transition rules:

I ⊆ R↓i for all 0 ≤ i ≤ N (I1)

post(R↓i) ⊆ R
↓
i+1 for all 0 ≤ i < N (I2)

R↓i ⊆ R
↓
i+1 for all 0 ≤ i < N (I3)

R↓i ⊆ P
↓ for all 0 ≤ i < N (I4)

These properties imply R↓i ⊇ Coveri, that is, the region Ri provides an over-
approximation of the i-cover.

The first step of the algorithm (rule [Initialize]) results with the state I ↓ | ∅,
which satisfies (I2)–(I4) trivially, and I ⊆ I ↓ establishes (I1). The following
lemma states that the invariants are preserved by rules that do not result in
valid or invalid.

Lemma 1. The rules [Unfold], [Induction], [Conflict], [CandidateNondet], and
[DecideNondet] preserve (I1) – (I4),

By induction on the length of the trace, it can be shown that if init 7→∗ R | Q,
then R | Q satisfies (I1) – (I4). When init 7→∗ valid, there is a state R | Q such
that init 7→∗ R | Q 7→ valid, and the last applied rule is [Valid]. To be able to
apply [Valid], there must be an i such that R↓i = R↓i+1.

We claim that R↓i is a covering set. This claim follows from (1) R↓i ⊆ P ↓ by
invariant (I4), (2) I ⊆ R↓i by invariant (I1), and (3) post(R↓i) ⊆ R↓i+1 = R↓i by
invariant (I2). This proves the correctness of the algorithm in case Cover ⊆ P ↓:

Theorem 1 (Soundness of uncoverability). Given a WSTS (Σ, I,→,�)
and a downward-closed set P ↓, if init 7→∗ valid, then Cover ⊆ P ↓.

We next consider the case when Cover 6⊆ P ↓. The following lemma describes
an invariant of the priority queue.

Lemma 2. Let init 7→∗ R | Q. For every 〈a, i〉 ∈ Q, there is a path from a to
some b ∈ Σ \ P ↓.

Theorem 2 (Soundness of coverability). Given a WSTS (Σ, I,→,�) and
a downward-closed set P ↓, if init 7→∗ invalid, then Cover 6⊆ P ↓.

Proof. The assumption init 7→∗ invalid implies that there is some state R | Q such
that init 7→∗ R | Q 7→ invalid, and the last applied rule was [Model]. Therefore,
there is an a such that 〈a, 0〉 ∈ Q. By Lemma 2, there is a path from a to some
b ∈ Σ \ P ↓. Since a ∈ I ↓, we have b ∈ Cover. ut

3.3 Termination

While the above non-deterministic rules guarantee soundness for any WSTS,
termination requires some additional choices. We modify the [DecideNondet] and
[CandidateNondet] rules into more restricted rules [Decide] and [Candidate], shown
in Figure 2. All other rules are unchanged.

The restricted rules still preserve the invariants (I1) – (I4). Thus, the modified
algorithm is still sound. To show termination, we first note that the system can
make progress until it reaches either valid or invalid.

Proposition 1 (Progress). If init 7→∗ R | Q, then one of the rules [Candidate],
[Decide], [Conflict], [Induction], [Unfold], [Model] and [Valid] is applicable.

[Candidate]
a ∈ R↓N ∩min(Σ \ P ↓)

R | ∅ 7→ R | 〈a,N〉

[Decide]
minQ = 〈a, i〉 i > 0 b ∈ min(pre(a ↑)) ∩R↓i−1 \ a ↑

R | Q 7→ R | Q.Push(〈b, i− 1〉)

Fig. 2. Rules replacing [CandidateNondet] and [DecideNondet] in Fig. 1.

Next, we define an ordering on states R | Q.

Definition 1. Let A↓ = (A↓1, . . . , A
↓
N) and B↓ = (B↓1 , . . . , B

↓
N) be two finite

sequences of downward-closed sets of the equal length N . Define A↓ v B↓ iff
A↓i ⊆ B↓i for all i = 1, . . . , N . Let Q be a priority queue whose elements are
tuples 〈a, i〉 ∈ Σ × {0, . . . , N}. Define `N (Q) := min({i | 〈a, i〉 ∈ Q} ∪ {N + 1}),
to be the smallest priority in Q, or N + 1 if Q is empty.

For two states R | Q and R′ | Q′ such that length(R) = length(R′) = N , we
define the ordering ≤s as:

R | Q ≤s R′ | Q′ :⇐⇒ R v R′ ∧ (R = R′ → `N (Q) ≤ `N (Q′)) .

We write R | Q <s R′ | Q′ if R | Q ≤s R′ | Q′ and R′ | Q′ �s R | Q.

Lemma 3. Given a natural number N , the relation ≤s is a well-quasi-ordering
on the set DN ×QN , where D is a set of downward-closed subsets of Σ, and QN
denotes the set of priority queues over Σ × {0, . . . , N}.

Using the well-quasi-ordering ≤s, we can prove a lemma which characterizes
infinite runs of the algorithm. The proof follows from the observation that if
R | Q 7→ R′ | Q′ as a result of applying the [Candidate], [Decide], [Conflict], or
[Induction] rules, then R′ | Q′ <s R | Q.

Lemma 4 (Infinite sequence condition). Any infinite sequence init 7→ σ1 7→
σ2 7→ · · · , must contain infinitely many i such that σi 7→ σi+1 by applying the
rule [Unfold].

Note that applying the rule [Unfold] increases the length of the sequence R.
Therefore, in any infinite run of the algorithm, length(R) increases unboundedly.
On the other hand, only a finite number of different sets R↓i can be generated for
a downward-finite WSTS. To show that, we define a sequence of sets Di, which
provide a finite representation of states backward reachable from Σ \ P ↓.

Recall the sequence U↑i of backward reachable states from (BackwardReach).
The set Di captures all new elements that are introduced in U↑i and that were
not present in the previous iterations. Formally, we define sets Di as follows:

D0 := min(Σ \ P ↓) , Di+1 :=
⋃
a∈Di

min(pre(a ↑)) \ U↑i . (2)

By induction and the finiteness of the set of minimal elements, it follows that
Di is finite for all i > 0. Furthermore, there is an L such that U↑L = U↑L+j , and
therefore DL+j = ∅, for all j > 0. As a consequence, the set

⋃
i>0 Di is finite.

Lemma 5. Let init 7→∗ R | Q. For every 〈a, i〉 ∈ Q, it holds that a ∈ DN−i.

Lemma 6. Given a downward-finite WSTS (Σ, I,→,�) and a downward-closed
set P ↓, let D :=

⋃
i>0 Di. Then there is N0 such that for any sequence R of

length(R) = N > N0, generated by applying the restricted rules, there is i < N

such that R↓i = R↓i+1.

Proof. From Lemma 5 and the definition (1) of Geni, it follows that the restricted
rules generate sequences R such that R↓i = Σ \Bi ↑ , Bi ⊇ Bi+1 and Bi ⊆ D ↓,
for i > 0. Since D is finite, D ↓ is also finite by downward-finiteness. Hence,
there is only a finite number of possible sets of the form Σ \ B ↑, for B ⊆ D ↓.
Therefore, sequences R of sufficient length contain equal adjacent sets. ut

Combining Lemmas 4 and 6, we see that in any infinite run of the algorithm,
the rule [Valid] becomes applicable from some point onward. If we impose a fair
usage of that rule (i.e. the rule is eventually used after it becomes applicable),
we get termination.

Theorem 3 (Termination). Given a downward-finite WSTS (Σ, I,→,�) and
a downward-closed set P ↓, if the rule [Valid] is used fairly, the algorithm reaches
either valid or invalid.

Note that Theorem 3 is the only result that requires downward-finiteness of
the WSTS. We show that the downward-finiteness condition is necessary for the
termination of the abstract IC3 algorithm, using arbitrary generalization schemes
and the full leeway in applying the rules. Consider a WSTS (N∪{ω}, {0},→,6),
where x → x + 1 for each x ∈ N and ω → ω, and 6 is the natural order on N
extended with x 6 ω for all x ∈ N. Consider the downward-closed set N. The
backward analysis terminates in one step, since pre(ω) = {ω}. However, the IC3
algorithm need not terminate. After unfolding, we find a conflict since pre(ω) =
{ω}, which is not initial. Generalizing, we get R↓1 = {0, 1}. At this point, we
unfold again. We find another conflict, and generalize to R↓2 = {0, 1, 2}. We
continue this way to generate an infinite sequence of steps without terminating.

4 Coverability for Petri Nets

We now describe an implementation of our algorithm for the coverability problem
for Petri nets, a widely used model for concurrent systems.

4.1 Petri Nets

A Petri net (PN, for short) is a tuple (S, T,W), where S is a finite set of places,
T is a finite set of transitions disjoint from S, and W : (S × T) ∪ (T × S) → N
is the arc multiplicity function.

The semantics of a PN is given using markings. A marking is a function from
S to N. For a marking m and place s ∈ S, we say s has m(s) tokens. A transition
t ∈ T is enabled at marking m, written m|t〉, if m(s) > W (s, t) for all s ∈ S. A
transition t that is enabled at m can fire, yielding a new marking m′ such that
m′(s) = m(s)−W (s, t)+W (t, s). We write m|t〉m′ to denote the transition from
m to m′ on firing t.

A PN (S, T,W) and an initial marking m0 give rise to a WSTS (Σ, {m0},→
,�), whereΣ is the set of markings, andm0 is a single initial state. The transition
relation is defined as follows: there is an edge m → m′ if and only if there is
some transition t ∈ T such that m|t〉m′. The well-quasi-ordering satisfies the
following property: m � m′ if and only if for each s ∈ S we have m(s) 6 m′(s).
The compatibility condition holds: if m1|t〉m2 and m1 � m′1, then there is a
marking m′2 such that m′1|t〉m′2 and m2 � m′2. Moreover, since markings can be
only non-negative integers, the wqo is downward-finite. The coverability problem
for PNs is defined as the coverability problem on this WSTS.

We represent Petri nets as follows. Let S = {s1, . . . , sn} be the set of places.
A marking m is represented as the tuple of natural numbers (m(s1), . . . ,m(sn)).
A transition t is represented as a pair (g,d) ∈ Nn × Zn, where g represents the
enabling condition, and d represents the difference between the number of tokens
in a place if the transition fires, and the current number of tokens. Formally, g =
(W (s1, t), . . . ,W (sn, t)) and d = (W (t, s1)−W (s1, t), . . . ,W (t, sn)−W (sn, t)).

We represent upward-closed sets with their minimal bases, which are finite
sets of n-tuples of natural numbers. A downward-closed set is represented as its
complement (which is an upward-closed set). The sets R↓i , which are constructed
during the algorithm run, are therefore represented as their complements. Such
a representation comes naturally as the algorithm executes. Originally each set
R↓i is initialized to contain all the states. The algorithm removes sets of states
of the form b ↑ from R↓i , for some b ∈ Nn. If a set b ↑ was removed from R↓i , we
say that states in b ↑ are blocked by b at level i. At the end every R↓i becomes
to a set of the form Σ \ {b1, . . . ,bl} ↑ and we conceptually represent R↓i with
{b1, . . . ,bl}.

The implementation uses a succinct representation of R, so called delta-
encoding [8]. Let R↓i = Σ \Bi ↑ and R↓i+1 = Σ \Bi+1 ↑ for some finite sets Bi and
Bi+1. Applying the invariant (I3) yields Bi+1 ⊆ Bi. Therefore we only need to
maintain a vector F = (F0, . . . , FN , F∞) such that b ∈ Fi if i is the highest level
where b was blocked. This is sufficient because b is also blocked on all lower lev-
els. As an illustration, for (R↓0, R

↓
1, R

↓
2) = ({i1, i2}, {b1,b2,b3,b4}, {b2,b3}), the

matching vector F might be (F0, F1, F2, F∞) = ({i1, i2}, {b1,b4}, {b2,b3}, ∅).
The set F∞ represents states that can never be reached.

4.2 Implementation Details and Optimizations

Our implementation follows the rules given in Figures 1 and 2. In addition, we
use optimizations from [8]. The main difference between our implementation
and [8] is in the interpretation of sets being blocked: in [8] those are cubes
identified with partial assignments to boolean variables, whereas in our case
those are upward-closed sets generated by a single state. Also, a straightforward
adaptation of the implementation [8] would replace a SAT solver with a solver
for integer difference logic, a fragment of linear integer arithmetic which allows
the most natural encoding of Petri nets. However, we observed that Petri nets
allow an easy and efficient way of computing predecessors and deciding relative
inductiveness directly. Thus we were able to eliminate the overhead of calling
the SMT solver.
Testing Membership in R↓i . Many of the rules given in Figures 1 and 2 depend on
testing whether some state a is contained in a set R↓k. Using the delta-encoded
vector F this can be done by iterating over Fi for k 6 i 6 N + 1 and checking if
any of them contains a state c such that c � a. If there is such a state, it blocks
a, otherwise a ∈ R↓k. If k = 0, we search for c only in F0.
Implementation of the Rules. The delta-encoded representation F also makes
[Valid] easy to implement. Checking if R↓i = R↓i+1 reduces to checking if Fi is
empty for some i < N . [Unfold] is applied when [Candidate] can no longer yield a
bad state contained in R↓N . It increases N and inserts an empty set to position
N in the vector F, thus pushing F∞ from position N to N + 1. We implemented
rules [Initialize], [Candidate] and [Model] in a straightforward manner.
Computing Predecessors. In the rest of the rules we need to find predecessors
pre(a ↑) in R↓i \ a ↑, or conclude relative inductiveness if no such predecessors
exist. The implementation in [8] achieves this by using a function solveRelative()
which invokes the SAT solver. But solveRelative() also does two important im-
provements. In case the SAT solver finds a cube of predecessors, it applies ternary
simulation to expand it further. If the SAT solver concludes relative inductive-
ness, it extracts information to conclude a generalized clause is inductive relative
to some level k > i. We succeeded to achieve analogous effects in case of Petri
nets by the following observations. While it is unclear what ternary simulation
would correspond to for Petri nets, the following lemma shows how to compute
the most general predecessor along a fixed transition directly.

Lemma 7. Let a ∈ Nn be a state and t = (g,d) ∈ Nn × Zn be a transition.
Then b ∈ pre(a ↑) is a predecessor along t if and only if b � max(a − d,g).

Therefore, to find an element of pre(a ↑) and R↓i \ a ↑, we iterate through all
transitions t = (g,d) and find the one for which max(a − d,g) ∈ R↓i \ a ↑.

If there are no such transitions, then a ↑ is inductive relative to R↓i . In that
case, for each transition t = (g,d) the predecessor max(a−d,g) is either blocked
by a itself, or there is it > i and a state ct ∈ Fit such that ct � max(a − d,g).
We define

i′ := min{it | t is a transition} ,

where it := N + 1 for t = (g,d) if max(a − d,g) is blocked by a itself. Then
i′ > i and a ↑ is inductive relative to R↓i′ .
Computing Generalizations. The following lemma shows that we can also signif-
icantly generalize a, i.e. there is a simple way to compute a state a′ � a such
that for all transitions t = (g,d), max(a′ − d,g) remains blocked either by a′
itself, or by ct.
Lemma 8. Let a, c ∈ Nn be states and t = (g,d) ∈ Nn × Zn be a transition.
1. Let c � max(a − d,g). Define a′′ ∈ Nn by a′′j := cj + dj if gj < cj and

a′′j := 0 if gj > cj, for j = 1, . . . , n. Then a′′ � a. Additionally, for each
a′ ∈ Nn such that a′′ � a′ � a, we have c � max(a′ − d,g).

2. If a � max(a − d,g), then for each a′ ∈ Nn such that a′ � a, it holds that
a′ � max(a′ − d,g).
To continue with the case when the predecessor max(a−d,g) is blocked for

each transition t = (g,d), we define a′′t as in Lemma 8 (1) if the predecessor is
blocked by some state ct ∈ Fit and a′′t := (0, . . . , 0) if it is blocked by a itself.
The state a′′ is defined to be the pointwise maximum of all states a′′t . By Lemma
8, predecessors of a′′ remain blocked by the same states ct or by a′′ itself.

However, a′′ still does not have to be a valid generalization, because it might
be in R↓0. If that is the case, we take any state c ∈ F0 which blocks a (such a
state exists because a /∈ R↓0). Then a′ := max(a′′, c) is a valid generalization:
a′ � a and a′ ↑ is inductive relative to R↓i′ .

Using this technique, rules [Decide], [Conflict] and [Induction] become easy to
implement. Note that some additional handling is needed in rules [Conflict] and
[Induction] when blocking a generalized upward-closed set a′ ↑. If a′ ↑ is inductive
relative to R↓i′ for i′ < N , we update the vector F by adding a′ to Fi′+1. However,
if i′ = N or i′ = N + 1, we add a′ to Fi′ . Additionaly, for 1 6 k 6 i′ + 1 (or
1 6 k 6 i′) we remove all states c ∈ Fk such that a′ � c.

5 Experimental Evaluation
We have implemented the IC3 algorithm in a tool called IIC. Our tool is written
in C++ and uses the input format of mist21. We evaluated the efficiency of the
algorithm on a collection of Petri net examples. The goal of the evaluation was
to compare the performance —both time and space usage— of IIC against other
implementations of Petri net coverability.

We compare the performance of IIC, using our implementation described
above, to the following algorithms: EEC [13] and backward search [1], as imple-
mented by the tool mist2, and the MCOV algorithm [16] for parameterized mul-
tithreaded programs as implemented by bfc2. All experiments were performed
on identical machines, each having Intel Xeon 2.67 GHz CPUs and 48 GB of
memory, running Linux 3.2.21 in 64 bit mode. Execution time was limited to 1
hour, and memory to five gigabytes.
1 See http://software.imdea.org/~pierreganty/ist.html
2 See http://www.cprover.org/bfc/

http://software.imdea.org/~pierreganty/ist.html
http://www.cprover.org/bfc/

Problem IIC Backward EEC MCOV
Instance Time Mem Time Mem Time Mem Time Mem

Uncoverable instances
Bingham (h = 150) 0.1 3.5 970.3 146.3 1.8 19.0 0.1 7.62c

Bingham (h = 250) 0.2 6.7 Timeout 9.6 45.4 0.2 19.62c

Ext. ReadWrite (small consts) 0.0 1.3 0.1 3.7 Timeout Timeout/OOM
Ext. ReadWrite 0.3 1.5 216.3 34.1 Timeout 0.6 4.12b

FMS (old) < 0.1 1.3 1.3 5.5 Timeout 0.1 5.82c

Mesh2x2 < 0.1 1.3 0.3 3.9 266.9 24.3 < 0.1 4.21c

Mesh3x2 < 0.1 1.5 4.1 7.0 Timeout < 0.1 2.02b

Multipoll 1.5 1.6 0.5 4.3 21.8 7.1 < 0.1 1.72b

MedAA1 0.5 173.3 8.8 598.8 3.7 210.42b

MedAA2 Timeout Timeout Timeout/OOM
MedAA5 Timeout Timeout Timeout/OOM
MedAR1 0.8 173.3 8.77 598.8 3.7 210.42b

MedAR2 33.2 173.3 15.7 599.4 13.7 210.42b

MedAR5 128.1 173.3 26.6 600 12.9 210.42b

MedHA1 0.8 173.3 8.9 598.7 5.52c 210.42b

MedHA2 33.2 173.3 14.7 599.5 12.6 210.42b

MedHA5 Timeout 3219.7 647.3 12.5 210.42b

MedHQ1 0.7 173.3 8.8 598.8 12.2 210.42b

MedHQ2 33.8 173.3 16.6 596.9 13.2 210.42b

MedHQ5 125.8 173.3 26.6 600 12.6 210.42b

Coverable instances
Kanban < 0.1 1.4 804.7 55.1 Timeout 0.1 6.02c

pncsacover 2.8 2.2 7.9 11.2 36.5 8.8 1.0 23.01c

pncsasemiliv 0.1 1.5 0.2 3.9 32.1 8.8 < 0.1 3.72c

MedAA1-bug 0.8 172.7 1.0 596.9 56.5 658.0 3.6 210.42b

MedHR2-bug 0.6 172.7 0.6 596.9 57.2 658.0 12.8 210.42b

MedHQ2-bug 0.4 172.7 0.3 596.9 56.8 658.0 12.9 210.42b

Table 1. Experimental results: comparison of running time and memory consumption
for different coverability algorithms on Petri net benchmarks. Memory consumption is
in MB, and running time in seconds. In the MCOV column, the superscripts indicate
the version of bfc used (1 means the version Jan 2012 version, 2 the Feb 2013 version),
and the analysis mode (c: combined, b: backward only, f : forward only). We list the
best result for all the version/parameter combinations that were tried. EEC timed out
on all MedXXX examples.

Mist2 and MedXXX Benchmarks. We used 29 Petri net examples from the
mist2 distribution and 12 examples from checking security properties of message-
passing programs communicating through unbounded and unordered channels
(MedXXX examples [18]). We focus on examples that took longer than 2 seconds
for at least one algorithm. Table 1 show run times and memory usage on the
mist2 and message-passing program benchmarks. For each row, the column in
bold shows the winner (time or space) for each instance. IIC performs well on
these benchmarks, both in time and in memory usage. To account for mist2’s use
of a pooled memory, we estimated its baseline usage to 2.5 MB by averaging over
all examples that ran in less than 1 second. The memory statistics includes the
size of the program binary. We created statically-linked versions of all binaries,
and the binaries were within 1 MB of each other.

Multithreaded Program Benchmarks. Table 2 shows comparisons of IIC with
MCOV on a set of multithreaded programs distributed with MCOV. While IIC

Problem IIC MCOV
Instance Time Mem Time Mem

Coverable instances
Boop 2 82.0 287.9 0.1 12.11c

FuncPtr3 1 < 0.1 1.5 < 0.1 3.42c

FuncPtr3 2 0.2 12.3 0.1 7.92c

FuncPtr3 3 28.5 939.1 3.6 303.81c

DoubleLock1 2 Timeout 0.8 56.72c

DoubleLock3 2 8.0 41.3 < 0.1 4.82c

Lu-fig2 3 Timeout 0.1 10.42c

Peterson 2 Timeout 0.2 23.01c

Pthread5 3 132428 468.8 0.1 17.01c

Pthread5 3 0.2 49.62c

SimpleLoop 2 7.9 6.0 < 0.1 4.82c

Spin2003 2 4852.2 54.4 < 0.1 2.72c

StackCAS 2 2.5 1.6 < 0.1 3.72c

StackCAS 3 5.5 21.7 < 0.1 4.42c

Szymanski 2 Timeout 0.4 26.72c

Problem IIC MCOV
Instance Time Mem Time Mem

Uncoverable instances
Conditionals 2 0.1 3.6 < 0.1 5.72c

RandCAS 2 < 0.1 2.0 < 0.1 3.92c

Table 2. Experimental results: comparison between MCOV and IIC on examples de-
rived from parameterized multithreaded programs. The superscripts for MCOV are as
in Table 1.

is competitive on the uncoverable examples, MCOV performs much better on the
coverable ones. We have identified two reasons for MCOV’s better performance.

The first reason is an encoding problem. MCOV represents examples as
thread transition systems (TTS) [16] that have 1-bounded “global” states and
potentially unbounded “local” states. A state of a TTS is a pair consisting of
a single global state and a multiset of local states. While [16] defines multiple
kinds of transitions, we only need to consider what happens to the global state.
In TTS, each transition is of the form: given a global state g1 and a condition on
the local states, go to global state g2 and modify the local states in a specific way.
For example, the SimpleLoop-2 example is a TTS with 65 global states and 28
local states. In the TTS, we find that for each global state, there are at most 32
transitions that have any given global state as final global state. In particular, if
the IIC algorithm were to be directly applied on this representation, the [Decide]
rule could be applied at most 32 times to a given state generated by [Candidate],
enumerating all pre-images induced by the corresponding transitions. Since our
implementation works on Petri nets, we translate TTS to PN. The translation
maps each global state to a Petri net place, but IIC does not know the invariant
that exactly one of these places contains a token. Thus, IIC generates pre-images
in which two or more places corresponding to global states contain tokens, and
rules them out later through a conflict. On the translation of SimpleLoop-2, we
found that 165 pre-images were generated for the target state in R↓1. This causes
a significant enlargement of the search space. We believe the use of PN invariants
can improve the performance of IIC.

The second reason is the use of a combined forward and backward search
in MCOV versus a backward search in IIC. It has been observed before that
forward search performs better on software examples [13]. For comparison, we
ran MCOV both in combined-search mode and in backward-search mode. In

80% of the cases (12 out of 16), the combined search was faster by at least
a factor of 10, while no measurable difference was observed in the other four
cases. Nevertheless, MCOV using backward search still outperforms IIC in these
examples because of the better encoding.

In conclusion, based on experimental results, we believe that IIC, an IC3-
based algorithm, is a practical coverability checker.
Acknowledgements. We thank Alexander Kaiser for help with the bfc tool.
We thank Aaron Bradley for helpful and detailed comments and suggestions.

References
1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-

rems for infinite-state systems. In LICS ’96, pages 313–321. IEEE, 1996.
2. P.A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with

unbounded, lossy FIFO channels. In CAV’98, LNCS 1427, pages 305–318. Springer,
1998.

3. A.R. Bradley. SAT-based model checking without unrolling. In VMCAI’11, LNCS,
pages 70–87. Springer, 2011.

4. G. Ciardo. Petri nets with marking-dependent arc multiplicity: properties and
analysis. In ICATPN ’94, volume 815 of LNCS, pages 179–198. Springer, 1994.

5. A. Cimatti and A. Griggio. Software model checking via IC3. In CAV’12:
Computer-Aided Verification, LNCS 7358, pages 277–293. Springer, 2012.

6. L.E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. American Journal of Mathematics, 35(4):413–422, 1913.

7. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability and
undecidability. In ICALP ’98, LNCS 1443, pages 103–115. Springer, 1998.

8. N. Een, A. Mishchenko, and R. Brayton. Efficient implementation of property
directed reachability. In FMCAD’11, pages 125–134. FMCAD Inc, 2011.

9. E.A. Emerson and K.S. Namjoshi. On model checking for non-deterministic
infinite-state systems. In LICS ’98, pages 70–80. IEEE, 1998.

10. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
LICS ’99, pages 352–359. IEEE Computer Society, 1999.

11. J. Esparza and M. Nielsen. Decidability issues for Petri nets – a survey. Bulletin
of the EATCS, 52:244–262, 1994.

12. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

13. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, enlarge and check: New
algorithms for the coverability problem of WSTS. J. Comput. Syst. Sci., 72(1):180–
203, 2006.

14. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, s3-2(1):326–336, 1952.

15. K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT’12,
pages 157–171. Springer, 2012.

16. A. Kaiser, D. Kroening, and T. Wahl. Efficient coverability analysis by proof
minimization. In CONCUR 2012, LNCS 7454, pages 500–515. Springer, 2012.

17. J. Kloos, R. Majumdar, F. Niksic, and R. Piskac. Incremental, inductive cover-
ability. Technical Report 1301.7321, CoRR, 2013.

18. R. Majumdar, R. Meyer, and Z. Wang. Static provenance verification for message-
passing programs. In SAS 13, 2013.

	Incremental, Inductive Coverability

