
Reducing Time-To-Fix For Fuzzer Bugs
Rui Abreu∗, Franjo Ivančić†, Filip Nikšić†, Hadi Ravanbakhsh†, Ramesh Viswanathan†

∗University of Porto, Porto, Portugal
†Google, Inc., New York City, NY, USA

Abstract—At Google, fuzzing C/C++ libraries has discovered
tens of thousands of security and robustness bugs. However,
these bugs are often reported much after they were introduced.
Developers are provided only with fault-inducing test inputs and
replication instructions that highlight a crash, but additional
debugging information may be needed to localize the cause of the
bug. Hence, developers need to spend substantial time debugging
the code and identifying commits that introduced the bug. In
this paper, we discuss our experience with automating a fuzzing-
enabled bisection that pinpoints the commit in which the crash
first manifests itself. This ultimately reduces the time critical bugs
stay open in our code base. We report on our experience over
the past year, which shows that developers fix bugs on average
2.23 times faster when aided by this automated analysis.

I. INTRODUCTION

Fuzzing has emerged as an effective technique for discov-
ering security vulnerabilities and reliability issues in software.
Fuzzing executes a program with randomly generated inputs,
and monitors them for invalid behavior, such as crashes,
memory corruption, and assertion violations. Coverage-guided
fuzzing [1], [2], combined with compiler instrumentation such
as LLVM [3] sanitizers [4], have enabled fuzzing to reach deep
program paths and uncover significantly more bugs.

The success of fuzzing has led to its widespread adoption in
industry, most notably through the emergence of services that
provide continuous fuzzing. For example, Google has devel-
oped continuous fuzzing infrastructures both for its internal
software and for external open-source projects. As of April
2021, Google’s ClusterFuzz project [5], through its OSS-Fuzz
instance [6], has alone filed nearly 30,000 bugs to developers
on over 340 open-source projects [7].

The continuous fuzzing infrastructure at Google is inte-
grated in the software development workflow. Developers
define fuzz targets—functions that take an array of bytes as
input and use it to exercise an API under test—and check them
into Google’s monolithic repository [8]. When a new bug is
found, the fuzzing infrastructure files an issue for the relevant
team that owns the fuzz target. The issue contains details
such as the test input that exposes the bug, and reproduction
instructions to investigate the issue.

Despite the information provided in the report, investigating
the issue and localizing the cause of the bug may still be
difficult and time consuming. The bug is often reported days,
months, and in extreme cases even years after being introduced
into the code base. During this time, Google’s monolithic
repository goes through a large number of changes. Even
though not all changes are relevant to the bug, the cause

Listing 1 A fuzz target for OpenCV [12].
int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size){
std::vector<uint8_t> arr = {data, data + size};
cv::Mat row = cv::Mat(1, arr.size(), CV_8UC1, arr.data());
try {
cv::Mat m = cv::imdecode(row, CV_LOAD_IMAGE_UNCHANGED);

} catch (cv::Exception e) { }
return 0;

}

may be hidden in a transitive dependency with which the fuzz
target’s owner has little experience.

To aid the debugging, we have developed an automated
fuzzing-enabled bisection service that pinpoints code changes
likely to be relevant to the bug. In this paper we report on
our experience with the service over the last 12 months. In
particular, we observe that providing the code-change bisection
information speeds up fixing fuzzer-reported bugs in Google’s
proprietary code on average by a factor of 2.23.

II. CONTINUOUS FUZZING AT GOOGLE

Fuzzing is often used in the context of discovering security
issues, such as memory-unsafety bugs. Recently, there has
also been interest in using fuzzing to test for other properties,
such as reliability, performance, and functional requirements.
As an example, there are fuzz targets that test multiple
implementations against each other to find discrepancies using
differential testing [9].

Coverage-guided Fuzzing. Fuzzing infrastructures gener-
ally utilize multiple coverage-guided fuzzing engines, such as
AFL [2], libFuzzer [1], Honggfuzz [10], and AFL++ [11].
These fuzzing engines collect coverage feedback from an
instrumented version of the code under test. For each input,
the collected coverage is compared to the combined coverage
profile obtained during fuzzing so far. New test inputs that
increase the coverage are then added to the current corpus of
coverage-increasing tests.

Fuzz Targets. Fuzzing infrastructures have converged to use
the LLVMFuzzerTestOneInput interface, initially introduced
by libFuzzer [1], as library-based fuzz targets. Fuzz targets
receive an input buffer generated by a fuzzing engine through
a sized buffer argument and use it to invoke some functionality
of the targeted code. For example, in Listing 1, the input buffer
data consisting of size number of bytes is fed it into the
OpenCV datatype cv::Mat.

Fuzzing Workflow. Figure 1 highlights the life cycle of
a fuzz target. Fuzzing, due to its nondeterministic nature,
does not guarantee that it can find regressions quickly. Thus,
a dedicated infrastructure is advantageous: It rebuilds fuzz



Source Code
Browser 

Build
Service 

Fuzzing
Binaries

Fuzzing
Service 

Issue
Tracker 

Target
Corpora 

Bisection
Service 

Coverage
Service 

Fig. 1. Continuous fuzzing developer workflow.

targets in multiple configurations and for multiple fuzzing
engines daily. The generated drivers are then used until the
next rebuild on dedicated sandboxed distributed infrastructure
to look for coverage-increasing tests and new bugs.

Corpus Handling. The fuzzing infrastructure chooses ran-
domly among the generated fuzzing executables. At the end
of each invocation of a fuzzing executable, it collects the
generated corpus of discovered test inputs and potential ar-
tifacts. Artifacts are those test inputs that caused the fuzzing
executable to report any suspicious behavior, such as inducing
a crash, assertion violation, triggering a memory leak, etc.

The corpus that was collected from a single invocation is
then added via a minimization step to the global coverage-
increasing corpus for that fuzz target. Developers can monitor
the obtained coverage in multiple ways, e.g., overlayed within
our codesearch browsing tool [13].

Crash Deduplication. The goal of fuzzing is not only to
find bugs, but also have them fixed. Hence, it is important to
notify developers when necessary, but not to unduly inconve-
nience them by unnecessary notifications. Thus, to make the
fuzzing output useful and actionable, we try to group together
as a single bug as many related crashes as possible, and report
to the user only the most security-sensitive representative of
the group. Security sensitivity is determined by classification
into predefined severity levels; e.g., a buffer overflow has
critical severity, while a failed assertion has low severity.

Automated Bug Monitoring. Since bugs reported by the
fuzzing infrastructure are reproducible, the infrastructure can
monitor the status of previously filed bugs. Thus, as daily
rebuilds of fuzz targets are completed, a crash reproduction
analysis is performed. Test inputs that fail to induce a crash
by the fuzz target are marked as resolved. Similarly, if a
developer closed a bug that the fuzzing infrastructure continues
to reproduce as a crash, the bug will be reopened.

III. APPROACH TO AUTOMATED BISECTION

The fuzzing infrastructure automatically deduplicates
crashes, files bugs for newly discovered issues in an issue
tracker, and monitors these issues until the crash is shown
to be fixed. This automation helps developers to focus on
the important, remaining open issues that need to be fixed.
However, so far, developers were asked to own all aspects of
the debugging process. In this section, we describe a simple
yet effective automation capability that helps developers fix
issues faster by pointing out relevant code changes that have
an impact on the found crashing inputs.

Since fuzzer-reported bugs are easily reproducible, we
added the capability to automatically perform a bisection on
code changes to discover the likely fault-inducing change. This
capability was earlier advertised to users in the created issues.
The main feature is that the fuzzing infrastructure performs
this analysis automatically for newly opened bugs and reports
its findings on the opened issues. Even so, we observed that
this feature significantly decreased the time it takes to fix
bugs—simply due to the automation.

Automated Bisection. The bisection algorithm is rela-
tively straightforward. Due to the size of Google’s mono-
repository [8], the bisection first tries to find a code change
within the project of interest. That is, we limit the bisection
search based on the fuzz target that is being investigated. This
might seem like an optimization only, but it allows the search
to focus on relevant code changes and not potential unrelated
failures outside the horizon of interest for the team that will
try to fix the issue in question. If that analysis fails to identify
a possible fault-inducing code change, the analysis falls back
to do a complete bisection over a predefined time period.

Issue Tracker Notification. Once a bisected code change
has been identified, the tool appends a message to the relevant
issue in the issue tracker, including the following information:

• The tool reports the bisected code change as relevant to
the issue.

• The tool displays the crashing reproduction run at the
bisected code change. It also shows the successful (i.e.
non-crashing) reproduction run with the same input at the
previous revision.

• The tool adds the author of the bisected code change as
CC to the issue. Crucially, it does not assign the issue
to the author. This is partly due to the fact that Google’s
mono-repository allows widespread code sharing. Thus,
the author of the bisected code change may not have the
requisite knowledge about the fuzz target of another team
relying on some library that they provide.

• If the bisected code change relates to changes in our so-
called //third_party open-source repository [14], the
tool highlights this information in the update message as
well. Changes in //third_party are often large-scale
updates from public repositories.

• If the bisected code change includes changes to the
fuzzer itself, this is highlighted in the update message.
Changes to the fuzzing harness are often intended to
cover previously uncovered code behaviors and may as
such intentionally cause new bugs to be found.

• The update to the issue also contains instructions how
to provide feedback in case developers disagree with the
classification. This has helped us resolve some issues,
as well as tailor the issue update messages. For example,
highlighting that a change was made in //third_party,
as well as being cognizant of changes to the fuzz harness
itself were due to earlier developer feedback.

Avoiding Efficacy-related Properties. Fuzzing infrastruc-
tures also report fuzzing efficacy issues. For example, if an



input causes a target to run too slowly (using a fixed threshold
such as 20 seconds), a time-out issue is filed. Similarly, if an
input causes a target to allocate too much memory, an out-of-
memory issue is filed. These issues may showcase performance
issues in the code under test. For example, we have seen
instances where fixes involved improving the runtime com-
plexity of nested loops. These issues also impede the fuzzers
from making efficient progress, and as such it is useful for the
fuzzing infrastructure to highlight this to developers.

However, trying to perform a bisection analysis is hard
for such scenarios for a number of reasons: First, execution
runtimes and allocation behavior can vary between different
invocations due to a variety of unrelated factors. Further,
while it may be possible to find a code change that triggers
the increased runtime to cross our predefined threshold, it is
not evident that such a code change is useful to consider
as the cause of a performance concern. Imagine a scenario
where a prior code change increased the runtime to within
95% of the timeout threshold, while a final code change
added the remaining 5%. Identifying the second code change
as the bisection output due to the fact that it caused the
threshold to be reached seems appropriate from the bisection
analysis point of view, but developers may not see the minor
performance increase as a valid concern. Thus, we stopped
reporting bisection results for time-out and out-of-memory
bugs due to developer feedback.

IV. USAGE EXPERIENCE

This section presents evaluation results of the automated
bisection capability for the past year. The bisection tool runs
as a best-effort analysis that only analyzes new bugs as they
are reported by the fuzzing infrastructure. As of September
2020 [15], the fuzzing infrastructure fuzzes several thousand
fuzz targets on 30,000 VMs. Fuzzing at Google has reported
tens of thousands of bugs across various ecosystems.

Furthermore, we restrict reported findings to code changes
that are at most six months old from the bug-filing date. We
do not report bisected code changes that are purely due to
changes to the fuzz target such as adding a new fuzz target,
for example. While it would be technically correct to report
such a code change as the bisection result, it does not point
developers to the underlying root cause of a reported bug.

In the following, we present data for the following questions
of interest based on a year of running the automated bisection
for fuzzer-reported bugs in production:

• Does providing the bisected code change along with the
reported test input improve the speed of fixing the bugs?

• Do bugs with bisected code changes get fixed more often
than other bugs for various time intervals of interest?

• Does the fix rate improvement for fuzzer-reported
bugs depend on whether the fuzz targets are in
Google’s proprietary code compared to targets covering
//third_party?

Time-to-fix Improvements. We have monitored the time
it takes to fix fuzzer-reported bugs since introducing the
automated bisection over the past year. Bugs filed against fuzz

May
2020

Jul
2020

Sep
2020

Nov
2020

Jan
2021

Mar
2021

May
2021

0.0

0.2

0.4

0.6

Fi
x 

ra
te

 im
pr

ov
em

en
t

All targets
Proprietary targets

Fig. 2. Fix rate improvement for all and Google’s proprietary fuzz targets.

targets in our proprietary code have been fixed on average
2.23 times faster. One unexpected side-benefit of the auto-
mated bisection is that we observe an even more pronounced
improvement in declaring duplicate bugs: Bisected bugs filed
in the past five months have been marked as duplicates 4 times
faster than non-bisected bugs.

Fix Rate Improvements. The previous analysis investigated
the speed-up of fixing known fuzzer-reported bugs. While
fixing bugs faster is important to address newly discovered
issues, it is not evident whether this also improves how many
bugs get fixed when looking at longer time horizons. That is,
does the analysis only improve the speed of fixing these bugs
or does it also increase the fixed bug count?

To answer this question, we investigate bugs reported by the
fuzzing service over the past year. Figure 2 show the fix rate
improvement for filed bugs with bisection results compared to
bugs without such additional reports. Bugs filed in the past
year are bucketed by the month in which they were reported.
We then observe the bug fix rate with and without bisection
reports for each month. Obviously, for older bugs, developers
had more time to prioritize fixing them.

For bugs filed on fuzz targets in non-//third_party code,
that is in Google’s proprietary code, the improvement in the
fix rate ranges from 4% to 37% for every month in the past
year. For bugs reported in the past 4 months, we can see a
significantly larger improvement in the fix rate. Over time, as
bugs age, the effect of the previously discussed shorter time to
fix bugs decreases. However, evidently, the bisection reports
have an impact on overall bug fixing rates even beyond that
initial time-period. This can be seen from the fact that for every
single month, bugs with bisection reports continue to have
a positive fix rate improvement—even as this improvement
reduces for older bugs.

For bugs filed on fuzz targets in both proprietary and
//third_party code (shown as “All targets” in Fig. 2), the
monthly bug fix improvement rate varies from −4% to 62%.

A distinction between //third_party and proprietary
targets is the familiarity of developers with the code. Fixes in
//third_party are often accomplished through re-imports
of open-source packages. The fact that we continue to see
improvements for recently reported bugs is due to time-to-



fix improvements. At the same time, we also highlight a few
months with very small improvements, and even one month
with a deterioration. This is likely due to predetermined sched-
uled updates of some large open-source projects. Since our
analysis avoids reporting the same code change too frequently,
as described in Section III, many bugs not considered as
bisected may get fixed by a combined import.

V. LESSONS LEARNED

This section describes a number of lessons that we learned
during the development and usage of our automated bisection
notification system for fuzzer-reported bugs.

Lesson 1: Importance of allowing developers to com-
municate back to infrastructure providers. Continuous
fuzzing runs on thousands of fuzz targets across hundreds of
projects in a variety of ecosystems, such as OSS-Fuzz [6].
For infrastructure providers, it is not possible to be intimately
familiar with all the various use cases that are being supported.
Thus, it is important to educate the developers to guarantee
that the infrastructure is utilized well. At the same time, it is
important to provide avenues for developers to ask questions,
raise issues, and provide feedback. We have found multiple
bugs in the tooling due to developer feedback.

As discussed in Section III, we also used this feedback
channel to improve our communication around bisected code
changes. An example of this was how the tooling handled
reports with respect to //third_party code changes. An-
other feature improvement driven by user feedback was to
understand the difference in bisection results to a property such
as a buffer overflow when compared to a runtime performance
property such as a target timing out. The former properties
lend themselves much easier to a bisection tooling, whereas
fuzzing-efficacy related properties require a much deeper in-
vestigation to be generally useful.

Lesson 2: Being annoying is not helpful. Bugs in widely
used libraries such as protocol buffers [16] can induce failures
in many fuzz targets. The fuzzing infrastructure does not de-
duplicate crashes across targets, however. This is due to the
fact that a bug in a low-level library indeed induces a bug for
each client. Not reporting this as a bug would be misleading,
since teams may otherwise decide to deploy their code to
production with a bug known to the infrastructure.

In general, we report bisection results by CC-ing code
authors to fuzzer-reported issues, even if the fuzz target is
not owned by the code author’s team. At the same time, it
would likely not be useful to notify the code author about
every instance across the whole mono-repository. There could
be hundreds of such bugs across fuzz targets. Thus, we limit
the number of times we report the same code change. This
allows us to highlight the issue to the code author without
unnecessarily notifying them too frequently.

Lesson 3: Not all bisected code changes are considered
useful. We have used the developers’ feedback to improve the
bisection results over time, such as for code changes adding or
changing fuzz targets. However, there are also some instances

Listing 2 An API where a renaming might result in bisected
code changes that some developers may find irrelevant.
#include <map>
#include <string>

int GetSpecialValue(const std::map<std::string, int>& map) {
const char* special_key = "old_key_name";
const std::map<std::string, int>::const_iterator it =

map.find(special_key);
if (it == map.end()) return -1;
const int return_value = it->second;
if (return_value < 0) {

__builtin_trap(); // An error that we want to catch.
}
return return_value;

}

where the bisection is in the code under test, but the benefit
of highlighting this code change to users is unclear.

As an example, consider a fuzz target that takes an
input buffer and creates an appropriate map to fuzz
GetSpecialValue in Listing 2. Suppose a developer up-
dates the variable special_key by changing the string
“old_key_name” to “new_key_name”. This would likely
cause previously reported bugs with “old_key_name” in the
test input to be considered as fixed. Eventually, new bugs
with “new_key_name” in the test input would be found and
reported to users, and the bisection would consider the update
to special_key as the relevant code change. While this
finding is correct from the bisection point of view, it does
not provide much value to developers in terms of debugging.

This type of inadequate finding is rare enough that we
have not yet decided to address the concern. However, it does
highlight the potential for additional future improvements; e.g.,
we may be able to find a prior code change that would be
interesting to point out. In a similar situation when the bisected
code change adds or changes a fuzz target, it may be possible
to back-propagate the change to find a prior code change that
would have been caught with the updated fuzz target. These
are areas of future improvements for our bisection tooling.

Lesson 4: Automating even simple steps can improve
outcomes. As described in Section IV, developers fix more
bugs and fix them faster if the automation helps in localizing
the issue. As mentioned previously, developers were able to
manually run a similar bisection analysis themselves for a
given bug. However, the fact that the automated solution
provided this feedback to developers proactively caused them
to look into the bugs. This is in contrast to the previous state of
the continuous fuzzing infrastructure, which filed bugs against
project teams (not individuals).

Lesson 5: Developers that are owners of projects are
instrumental in fixing security bugs. Section IV highlighted
the difference in bug fix rate improvement between Google’s
proprietary and //third_party code. Developers working
with //third_party code do not always have enough back-
ground to fix complex bugs. That is, open-source developers
and code owners are in the best position to fix bugs in their
open-source projects. Thus, we are very excited to continue to
support fuzzing of open-source projects in OSS-Fuzz [6].



REFERENCES

[1] K. Serebryany, “libfuzzer – a library for coverage-guided fuzz testing.”
https://llvm.org/docs/LibFuzzer.html#fuzz-target, 2015.

[2] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl,
2014.

[3] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in CGO. IEEE Computer
Society, 2004. [Online]. Available: http://dl.acm.org/citation.cfm?id=
977395.977673

[4] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in USENIX ATC 2012, 2012.

[5] A. Arya, O. Chang, M. Moroz, M. Barbella, J. Metzman, and
the ClusterFuzz Team, “Open sourcing ClusterFuzz,” Google Open
Source Blog, February 2019. [Online]. Available: https://opensource.
googleblog.com/2019/02/open-sourcing-clusterfuzz.html

[6] M. Aizatsky, K. Serebryany, O. Chang, A. Arya, and
M. Whittaker, “Announcing OSS-Fuzz: Continuous fuzzing
for open source software,” Google Testing Blog, December
2016. [Online]. Available: https://testing.googleblog.com/2016/12/
announcing-oss-fuzz-continuous-fuzzing.html

[7] M. Ruhstaller and O. Chang, “A new chapter for OSS-Fuzz,”
Google Security Blog, November 2018. [Online]. Available: https:
//security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

[8] R. Potvin and J. Levenberg, “Why Google stores billions of lines of
code in a single repository,” Commun. ACM, vol. 59, no. 7, pp. 78–87,
June 2016. [Online]. Available: http://doi.acm.org/10.1145/2854146

[9] S. Nilizadeh, Y. Noller, and C. S. Păsăreanu, “DifFuzz: Differential
fuzzing for side-channel analysis,” in ICSE, 2019.

[10] R. Swiecki, “HonggFuzz,” http://honggfuzz.com, 2015.
[11] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining

incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[12] Intel Corporation, Willow Garage, and Itseez, “Open source computer
vision library,” 2019. [Online]. Available: https://opencv.org

[13] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for
code: A case study,” in ESEC/FSE. ACM, 2015, pp. 191–201.

[14] Google, “Third-party,” Google’s open source documentation, 2019.
[Online]. Available: https://opensource.google.com/docs/thirdparty

[15] ——. ClusterFuzz. [Online]. Available: https://google.github.io/
clusterfuzz/

[16] K. Varda, “Protocol buffers: Google’s data interchange format,” Google
Open Source Blog, July 2008.


